Thursday, 10 November 2011

Fewer deadlocks, higher throughput

Here’s the problem: first transaction (T1) writes to key a and b in this order. Second transaction (T2) writes to key b and a - again order is relevant. Now with some "right timing" T1 manages to acquire lock on a and T2 acquires lock on b. And then they wait one for the other to release locks so that they can progress. This is what is called a deadlock and is really bad for your system throughput - but I won’t insist on this aspect, as I’ve mentioned it a lot in my previous posts.

What I want to talk about though is a way to solve this problem. Quit a simple way - just force an order on your transaction writes and you’re guaranteed not to deadlock: if both T1 and T2 write to a then b (lexicographical order) there won’t be any deadlock. Ever.

But there’s a catch. It’s not always possible to define this order, simply because you can’t or because you don’t know all your keys at the very beginning of the transaction.

Now here’s the good news: Infinispan orders the keys touched in a transaction for you. And it even defines an order so that you won’t have to do that. Actually you don’t have to anything, not even enable this feature, as it is already enabled for you by default.

Does it sound too good to be true? That’s because it’s only partially true. That is lock reordering only works if you’re using optimistic locking. For pessimistic locking you still have to do it the old way - order your locks (that’s of course if you can).

Wanna know more about it? Read this.

Expect and enjoy this feature in our next release 5.1.0.BETA5.

Stay tunned!

Mircea

Posted by Mircea Markus on 2011-11-10
Tags: transactions locking deadlock detection

Wednesday, 09 November 2011

Single lock owner: an important step forward

The single lock owner is a highly requested Infinispan improvement. The basic idea behind it is that, when writing to a key, locks are no longer acquired on all the nodes that own that key, but only on a single designated node (named "main owner").

How does it help me?

Short version: if you use transactions that concurrently write to the same keys, this improvement significantly increases your system' throughput.

Long version: If you’re using Infinispan with transactions that modify the same key(s) concurrently then you can easily end up in a deadlock. A deadlock can also occur if two transaction modify the same key at the same time - which is both inefficient and counter-intuitive. Such a deadlock means that at one transaction(or both) eventually rollback but also the lock on the key is held for the duration of a lockAquistionTimout config option (defaults to 10 seconds). These deadlocks reduces the throughput significantly as transactions threads are held inactive during deadlock time. On top of that, other transactions that want to operate on that key are also delayed, potentially resulting in a cascade effect.

What’s the added performance penalty?

The only encountered performance penalty is during cluster topology changes. At that point the cluster needs to perform some additional computation (no RPC involved) to fail-over the acquired locks from previous to new owners. Another noticeable aspect is that locks are now being released asynchronously, after the transaction commits. This doesn’t add any burden to the transaction duration, but it means that locks are being held slightly longer. That’s not something to be concerned about if you’re not using transactions that compete for same locks though. We plan to benchmark this feature using Radargun benchmark tool - we’ll report back!

Want to know more?

You can read the single lock owner design wiki or/and follow the JIRA JIRA discussions.

Posted by Mircea Markus on 2011-11-09
Tags: radargun transactions locking deadlock detection

Monday, 03 October 2011

Transaction remake in Infinispan 5.1

If you ever used Infinispan in a transactional way you might be very interested in this article as it describes some very significant improvements in version 5.1 "Brahma" (released with 5.1.Beta1):

  • starting with this release an Infinispan cache can accessed either transactionally or non-transactionally. The mixed access mode is no longer supported (backward compatibility still maintained, see below). There are several reasons for going this path, but one of them most important result of this decision is a cleaner semantic on how concurrency is managed between multiple requestors for the same cache entry.

  • starting with 5.1 the supported transaction models are optimistic and pessimistic. Optimistic model is an improvement over the existing default transaction model by completely deferring lock acquisition to transaction prepare time. That reduces lock acquisition duration and increases throughput; also avoids deadlocks. With pessimistic model, cluster wide-locks are being acquired on each write and only being released after the transaction completed (see below).

Transactional or non transactional cache?

It’s up to you as an user to decide weather you want to define a cache as transactional or not. By default, infinispan caches are non transactional. A cache can be made transactional by changing the transactionMode attribute:

transactionMode can only take two values: TRANSACTIONAL and NON_TRANSACTIONAL. Same thing can be also achieved programatically:

Important:for transactional caches it is required to configure a TransactionManagerLookup.

Backward compatibility

The autoCommit attribute was added in order to assure backward compatibility. If a cache is transactional and autoCommit is enabled (defaults to true) then any call that is performed outside of a transaction’s scope is transparently wrapped within a transaction. In other words Infinispan adds the logic for starting a transaction before the call and committing it after the call. So if your code accesses a cache both transactionally and non-transactionally, all you have to do when migrating to Infinispan 5.1 is mark the cache as transactional and enable autoCommit (that’s actually enabled by default, so just don’t disable it :) The autoCommit feature can be managed through configuration:

or programatically:

Optimistic Transactions

With optimistic transactions locks are being acquired at transaction prepare time and are only being held up to the point the transaction commits (or rollbacks). This is different from the 5.0 default locking model where local locks are being acquire on writes and cluster locks are being acquired during prepare time. Optimistic transactions can be enabled in the configuration file:

or programatically:

By default, a transactional cache is optimistic.

Pessimistic Transactions

From a lock acquisition perspective, pessimistic transactions obtain locks on keys at the time the key is written. E.g.

When cache.put(k1,v1) returns k1 is locked and no other transaction running anywhere in the cluster can write to it. Reading k1 is still possible. The lock on k1 is released when the transaction completes (commits or rollbacks).

Pessimistic transactions can be enabled in the configuration file:

or programatically:

What do I need - pessimistic or optimistic transactions?

From a use case perspective, optimistic transactions should be used when there’s not a lot of contention between multiple transactions running at the same time. That is because the optimistic transactions rollback if data has changed between the time it was read and the time it was committed (writeSkewCheck). On the other hand, pessimistic transactions might be a better fit when there is high contention on the keys and transaction rollbacks are less desirable. Pessimistic transactions are more costly by their nature: each write operation potentially involves a RPC for lock acquisition.

The path ahead

This major transaction rework has opened the way for several other transaction related improvements:

  • Single node locking model is a major step forward in avoiding deadlocks and increasing throughput by only acquiring locks on a single node in the cluster, disregarding the number of redundant copies (numOwners) on which data is replicated

  • Lock acquisition reordering is a deadlock avoidance technique that will be used for optimistic transactions

  • Incremental locking is another technique for minimising deadlocks.

Stay tuned! Mircea

Posted by Mircea Markus on 2011-10-03
Tags: transactions locking deadlock detection performance

Monday, 27 July 2009

Increase transactional throughput with deadlock detection

Deadlock detection is a new feature in Infinispan. It is about increasing the number of transactions that can be concurrently processed. Let’s start with the problem first (the deadlock) then discuss some design details and performance.

So, the by-the-book deadlock example is the following:

  • Transaction one (T1) performs following operation sequence: (write key_1,write key_2)

  • Transaction two (T2) performs following sequence: (write key_2, write key_1).

Now, if the T1 and T2 happen at the same time and both have executed first operation, then they will wait for each other virtually forever to release owned locks on keys. In the real world, the waiting period is defined by a lock acquisition timeout (LAT) - which defaults to 10 seconds - that allows the system to overcome such scenarios and respond to the user one way (successful) or the other(failure): so after a period of LAT one (or both) transaction will rollback, allowing the other to continue working.

Deadlocks are bad for both system’s throughput and user experience. System throughput is affected because during the deadlock period (which might extend up to LAT) no other thread will be able to update neither key_1 nor key_2. Even worse, access to any other keys that were modified by T1 or T2 will be similarly restricted. User experience is altered by the fact that the call(s) will freeze for the entire deadlock period, and also there’s a chance that both T1 and T2 will rollback by timing out.

As a side note, in the previous example, if the code running the transactions would(and can) enforce any sort of ordering on the keys accessed within the transaction, then the deadlock would be avoided. E.g. if the application code would order the operation based on the lexicographic ordering of keys, both T1 and T2 would execute the following sequence: (write key_1,write key_2), and so no deadlock would result. This is a best practice and should be followed whenever possible. Enough with the theory! The way Infinispan performs deadlock detection is based on an algorithm designed by Jason Greene and Manik Surtani, which is detailed here. The basic idea is to split the LAT in smaller cycles, as it follows:

lock(int lockAcquisitionTimeout) {
while (currentTime < startTime + timeout) {
 if (acquire(smallTimeout)) break;
 testForDeadlock(globalTransaction, key);
}
}

What testForDeadlock(globalTransaction, key) does is check weather there is another transaction that satisfies both conditions:

  1. holds a lock on key and

  2. intends to lock on a key that is currently called by this transaction.

If such a transaction is found then this is a deadlock, and one of the running transactions will be interrupted: the decision of which transaction will interrupt is based on coin toss, a random number that is associated with each transaction. This will ensure that only one transaction will rollback, and the decision is deterministic: nodes and transactions do not need to communicate with each other to determine the outcome.

Deadlock detection in Infinispan works in two flavors: determining deadlocks on transactions that spread over several caches and deadlock detection in transactions running on a single(local) cache.

Let’s see some performance figures as well. A class for benchmarking performance of deadlock detection functionality was created and can be seen here. Test description (from javadoc):

We use a fixed size pool of keys (KEY_POOL_SIZE) on which each transaction operates. A number of threads (THREAD_COUNT) repeatedly starts transactions and tries to acquire locks on a random subset of this pool, by executing put operations on each key. If all locks were successfully acquired then the tx tries to commit: only if it succeeds this tx is counted as successful. The number of elements in this subset is the transaction size (TX_SIZE). The greater transaction size is, the higher chance for deadlock situation to occur. On each thread these transactions are being repeatedly executed (each time on a different, random key set) for a given time interval (BENCHMARK_DURATION). At the end, the number of successful transactions from each thread is cumulated, and this defines throughput (successful tx) per time unit (by default one minute).

Disclaimer: The following figures are for a scenario especially designed to force very high contention. This is not typical, and you shouldn’t expect to see this level of increase in performance for applications with lower contention (which most likely is the case). Please feel free tune the above benchmark class to fit the contention level of your application; sharing your experience would be very useful!

Following diagram shows the performance degradation resulting from running the deadlock detection code by itslef in a scenario where no contention/deadlocks are present. imagehttp://2.bp.blogspot.com/_ISQfVF8ALAQ/Sm2h_re8qKI/AAAAAAAABqA/bsNgEyCkcYw/s1600-h/DLD_replicated.JPG[image]image Some clues on when to enable deadlock detection. A high number of transaction rolling back due to org.infinispan.util.concurrent.TimeoutException is an indicator that this functionality might help. TimeoutException might be caused by other causes as well, but deadlocks will always result in this exception being thrown. Generally, when you have a high contention on a set of keys, deadlock detection may help. But the best way is not to guess the performance improvement but to benchmark and monitor it: you can have access to statistics (e.g. number of deadlocks detected) through JMX, as it is exposed via the DeadlockDetectingLockManager MBean.

Posted by Mircea Markus on 2009-07-27
Tags: transactions benchmarks deadlock detection concurrency

News

Tags

JUGs alpha as7 asymmetric clusters asynchronous beta c++ cdi chat clustering community conference configuration console data grids data-as-a-service database devoxx distributed executors docker event functional grouping and aggregation hotrod infinispan java 8 jboss cache jcache jclouds jcp jdg jpa judcon kubernetes listeners meetup minor release off-heap openshift performance presentations product protostream radargun radegast recruit release release 8.2 9.0 final release candidate remote query replication queue rest query security spring streams transactions vert.x workshop 8.1.0 API DSL Hibernate-Search Ickle Infinispan Query JP-QL JSON JUGs JavaOne LGPL License NoSQL Open Source Protobuf SCM administration affinity algorithms alpha amazon annotations announcement archetype archetypes as5 as7 asl2 asynchronous atomic maps atomic objects availability aws beer benchmark benchmarks berkeleydb beta beta release blogger book breizh camp buddy replication bugfix c# c++ c3p0 cache benchmark framework cache store cache stores cachestore cassandra cdi cep certification cli cloud storage clustered cache configuration clustered counters clustered locks codemotion codename colocation command line interface community comparison compose concurrency conference conferences configuration console counter cpp-client cpu creative cross site replication csharp custom commands daas data container data entry data grids data structures data-as-a-service deadlock detection demo deployment dev-preview devnation devoxx distributed executors distributed queries distribution docker documentation domain mode dotnet-client dzone refcard ec2 ehcache embedded query equivalence event eviction example externalizers failover faq final fine grained flags flink full-text functional future garbage collection geecon getAll gigaspaces git github gke google graalvm greach conf gsoc hackergarten hadoop hbase health hibernate hibernate ogm hibernate search hot rod hotrod hql http/2 ide index indexing india infinispan infinispan 8 infoq internationalization interoperability interview introduction iteration javascript jboss as 5 jboss asylum jboss cache jbossworld jbug jcache jclouds jcp jdbc jdg jgroups jopr jpa js-client jsr 107 jsr 347 jta judcon kafka kubernetes lambda language leveldb license listeners loader local mode lock striping locking logging lucene mac management map reduce marshalling maven memcached memory migration minikube minishift minor release modules mongodb monitoring multi-tenancy nashorn native near caching netty node.js nodejs nosqlunit off-heap openshift operator oracle osgi overhead paas paid support partition handling partitioning performance persistence podcast presentations protostream public speaking push api putAll python quarkus query quick start radargun radegast react reactive red hat redis rehashing releaase release release candidate remote remote events remote query replication rest rest query roadmap rocksdb ruby s3 scattered cache scripting second level cache provider security segmented server shell site snowcamp spark split brain spring spring boot spring-session stable standards state transfer statistics storage store store by reference store by value streams substratevm synchronization syntax highlighting testing tomcat transactions uneven load user groups user guide vagrant versioning vert.x video videos virtual nodes vote voxxed voxxed days milano wallpaper websocket websockets wildfly workshop xsd xsite yarn zulip

back to top