1. Configuring the Infinispan Maven Repository
Infinispan Java distributions are available from Maven.
Infinispan artifacts are available from Maven central. See the org.infinispan group for available Infinispan artifacts.
1.1. Configuring Your Infinispan POM
Maven uses configuration files called Project Object Model (POM) files to define projects and manage builds. POM files are in XML format and describe the module and component dependencies, build order, and targets for the resulting project packaging and output.
-
Open your project
pom.xml
for editing. -
Define the
version.infinispan
property with the correct Infinispan version. -
Include the
infinispan-bom
in adependencyManagement
section.The Bill Of Materials (BOM) controls dependency versions, which avoids version conflicts and means you do not need to set the version for each Infinispan artifact you add as a dependency to your project.
-
Save and close
pom.xml
.
The following example shows the Infinispan version and BOM:
<properties>
<version.infinispan>12.0.2.Final</version.infinispan>
</properties>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-bom</artifactId>
<version>${version.infinispan}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
Add Infinispan artifacts as dependencies to your pom.xml
as required.
2. Cache Managers
The main entry point to Infinispan is the CacheManager
interface that lets you:
-
Configure and obtain caches.
-
Manage and monitor clustered Infinispan nodes.
-
Execute code across your cluster.
If you embed Infinispan in your application, then you use an
EmbeddedCacheManager
. If you run Infinispan as a remote server, then you use
a RemoteCacheManager
.
Cache Managers are heavyweight objects so you should instantiate only one
CacheManager
instance per JVM in most cases.
EmbeddedCacheManager manager = new DefaultCacheManager(); (1)
1 | Starts a local, non-clustered, Cache Manager with no caches. |
Cache Managers have lifecycles and the default constructors also call the
start()
method. Overloaded versions of the constructors are available, but
they do not start the CacheManager
. However, you must always start the
CacheManager
before you can create caches.
Likewise, you must call stop()
when you no longer require a running
CacheManager
so that it releases resources. This also ensures that the Cache
Manager safely stops any caches that it controls.
2.1. Obtaining caches
After you configure the CacheManager
, you can obtain and control caches.
Invoke the getCache(String)
method to obtain caches, as follows:
Cache<String, String> myCache = manager.getCache("myCache");
The preceding operation creates a cache named myCache
, if it does not already exist, and returns it.
Using the getCache()
method creates the cache only on the node where you invoke the method. In other words, it performs a local operation that must be invoked on each node across the cluster. Typically, applications deployed across multiple nodes obtain caches during initialization to ensure that caches are symmetric and exist on each node.
Invoke the createCache()
method to create caches dynamically across the entire cluster, as follows:
Cache<String, String> myCache = manager.administration().createCache("myCache", "myTemplate");
The preceding operation also automatically creates caches on any nodes that subsequently join the cluster.
Caches that you create with the createCache()
method are ephemeral by default. If the entire cluster shuts down, the cache is not automatically created again when it restarts.
Use the PERMANENT flag to ensure that caches can survive restarts, as follows:
Cache<String, String> myCache = manager.administration().withFlags(AdminFlag.PERMANENT).createCache("myCache", "myTemplate");
For the PERMANENT flag to take effect, you must enable global state and set a configuration storage provider.
For more information about configuration storage providers, see GlobalStateConfigurationBuilder#configurationStorage().
2.2. Clustering Information
The EmbeddedCacheManager
has quite a few methods to provide information
as to how the cluster is operating. The following methods only really make
sense when being used in a clustered environment (that is when a Transport
is configured).
2.3. Member Information
When you are using a cluster it is very important to be able to find information about membership in the cluster including who is the owner of the cluster.
The getMembers() method returns all of the nodes in the current cluster.
The getCoordinator() method will tell you which one of the members is the coordinator of the cluster. For most intents you shouldn’t need to care who the coordinator is. You can use isCoordinator() method directly to see if the local node is the coordinator as well.
3. Infinispan Cache Interface
Infinispan provides a Cache interface that exposes simple methods for adding, retrieving and removing entries, including atomic mechanisms exposed by the JDK’s ConcurrentMap interface. Based on the cache mode used, invoking these methods will trigger a number of things to happen, potentially even including replicating an entry to a remote node or looking up an entry from a remote node, or potentially a cache store.
3.1. Cache API
For simple usage, using the Cache API should be no different from using the JDK Map API, and hence migrating from simple in-memory caches based on a Map to Infinispan’s Cache should be trivial.
3.1.1. Performance Concerns of Certain Map Methods
Certain methods exposed in Map have certain performance consequences when used with Infinispan, such as
size() ,
values() ,
keySet() and
entrySet() .
Specific methods on the keySet
, values
and entrySet
are fine for use please see their Javadoc for further details.
Attempting to perform these operations globally would have large performance impact as well as become a scalability bottleneck. As such, these methods should only be used for informational or debugging purposes only.
It should be noted that using certain flags with the withFlags() method can mitigate some of these concerns, please check each method’s documentation for more details.
3.1.2. Mortal and Immortal Data
Further to simply storing entries, Infinispan’s cache API allows you to attach mortality information to data. For example, simply using put(key, value) would create an immortal entry, i.e., an entry that lives in the cache forever, until it is removed (or evicted from memory to prevent running out of memory). If, however, you put data in the cache using put(key, value, lifespan, timeunit) , this creates a mortal entry, i.e., an entry that has a fixed lifespan and expires after that lifespan.
In addition to lifespan , Infinispan also supports maxIdle as an additional metric with which to determine expiration. Any combination of lifespans or maxIdles can be used.
3.1.3. putForExternalRead operation
Infinispan’s Cache class contains a different 'put' operation called putForExternalRead . This operation is particularly useful when Infinispan is used as a temporary cache for data that is persisted elsewhere. Under heavy read scenarios, contention in the cache should not delay the real transactions at hand, since caching should just be an optimization and not something that gets in the way.
To achieve this, putForExternalRead()
acts as a put call that only operates if the key is not present in the cache, and fails fast and silently if another thread is trying to store the same key at the same time. In this particular scenario, caching data is a way to optimise the system and it’s not desirable that a failure in caching affects the on-going transaction, hence why failure is handled differently. putForExternalRead()
is considered to be a fast operation because regardless of whether it’s successful or not, it doesn’t wait for any locks, and so returns to the caller promptly.
To understand how to use this operation, let’s look at basic example. Imagine a cache of Person instances, each keyed by a PersonId , whose data originates in a separate data store. The following code shows the most common pattern of using putForExternalRead within the context of this example:
// Id of the person to look up, provided by the application
PersonId id = ...;
// Get a reference to the cache where person instances will be stored
Cache<PersonId, Person> cache = ...;
// First, check whether the cache contains the person instance
// associated with with the given id
Person cachedPerson = cache.get(id);
if (cachedPerson == null) {
// The person is not cached yet, so query the data store with the id
Person person = dataStore.lookup(id);
// Cache the person along with the id so that future requests can
// retrieve it from memory rather than going to the data store
cache.putForExternalRead(id, person);
} else {
// The person was found in the cache, so return it to the application
return cachedPerson;
}
Note that putForExternalRead should never be used as a mechanism to update the cache with a new Person instance originating from application execution (i.e. from a transaction that modifies a Person’s address). When updating cached values, please use the standard put operation, otherwise the possibility of caching corrupt data is likely.
3.2. AdvancedCache API
In addition to the simple Cache interface, Infinispan offers an AdvancedCache interface, geared towards extension authors. The AdvancedCache offers the ability to access certain internal components and to apply flags to alter the default behavior of certain cache methods. The following code snippet depicts how an AdvancedCache can be obtained:
AdvancedCache advancedCache = cache.getAdvancedCache();
3.2.1. Flags
Flags are applied to regular cache methods to alter the behavior of certain methods. For a list of all available flags, and their effects, see the Flag enumeration. Flags are applied using AdvancedCache.withFlags() . This builder method can be used to apply any number of flags to a cache invocation, for example:
advancedCache.withFlags(Flag.CACHE_MODE_LOCAL, Flag.SKIP_LOCKING)
.withFlags(Flag.FORCE_SYNCHRONOUS)
.put("hello", "world");
3.3. Listeners and Notifications
Infinispan offers a listener API, where clients can register for and get notified when events take place. This annotation-driven API applies to 2 different levels: cache level events and cache manager level events.
Events trigger a notification which is dispatched to listeners. Listeners are simple POJOs annotated with @Listener and registered using the methods defined in the Listenable interface.
Both Cache and CacheManager implement Listenable, which means you can attach listeners to either a cache or a cache manager, to receive either cache-level or cache manager-level notifications. |
For example, the following class defines a listener to print out some information every time a new entry is added to the cache, in a non blocking fashion:
@Listener
public class PrintWhenAdded {
Queue<CacheEntryCreatedEvent> events = new ConcurrentLinkedQueue<>();
@CacheEntryCreated
public CompletionStage<Void> print(CacheEntryCreatedEvent event) {
events.add(event);
return null;
}
}
For more comprehensive examples, please see the Javadocs for @Listener.
3.3.1. Cache-level notifications
Cache-level events occur on a per-cache basis, and by default are only raised on nodes where the events occur. Note in a distributed cache these events are only raised on the owners of data being affected. Examples of cache-level events are entries being added, removed, modified, etc. These events trigger notifications to listeners registered to a specific cache.
Please see the Javadocs on the org.infinispan.notifications.cachelistener.annotation package for a comprehensive list of all cache-level notifications, and their respective method-level annotations.
Please refer to the Javadocs on the org.infinispan.notifications.cachelistener.annotation package for the list of cache-level notifications available in Infinispan. |
Cluster Listeners
The cluster listeners should be used when it is desirable to listen to the cache events on a single node.
To do so all that is required is set to annotate your listener as being clustered.
@Listener (clustered = true)
public class MyClusterListener { .... }
There are some limitations to cluster listeners from a non clustered listener.
-
A cluster listener can only listen to
@CacheEntryModified
,@CacheEntryCreated
,@CacheEntryRemoved
and@CacheEntryExpired
events. Note this means any other type of event will not be listened to for this listener. -
Only the post event is sent to a cluster listener, the pre event is ignored.
Event filtering and conversion
All applicable events on the node where the listener is installed will be raised to the listener. It is possible to dynamically filter what events are raised by using a KeyFilter (only allows filtering on keys) or CacheEventFilter (used to filter for keys, old value, old metadata, new value, new metadata, whether command was retried, if the event is before the event (ie. isPre) and also the command type).
The example here shows a simple KeyFilter
that will only allow events to be raised when an event modified the entry for the key Only Me
.
public class SpecificKeyFilter implements KeyFilter<String> {
private final String keyToAccept;
public SpecificKeyFilter(String keyToAccept) {
if (keyToAccept == null) {
throw new NullPointerException();
}
this.keyToAccept = keyToAccept;
}
public boolean accept(String key) {
return keyToAccept.equals(key);
}
}
...
cache.addListener(listener, new SpecificKeyFilter("Only Me"));
...
This can be useful when you want to limit what events you receive in a more efficient manner.
There is also a CacheEventConverter that can be supplied that allows for converting a value to another before raising the event. This can be nice to modularize any code that does value conversions.
The mentioned filters and converters are especially beneficial when used in conjunction with a Cluster Listener. This is because the filtering and conversion is done on the node where the event originated and not on the node where event is listened to. This can provide benefits of not having to replicate events across the cluster (filter) or even have reduced payloads (converter). |
Initial State Events
When a listener is installed it will only be notified of events after it is fully installed.
It may be desirable to get the current state of the cache contents upon first registration of listener by having an event generated of type @CacheEntryCreated
for each element in the cache. Any additionally generated events during this initial phase will be queued until appropriate events have been raised.
This only works for clustered listeners at this time. ISPN-4608 covers adding this for non clustered listeners. |
Duplicate Events
It is possible in a non transactional cache to receive duplicate events. This is possible when the primary owner of a key goes down while trying to perform a write operation such as a put.
Infinispan internally will rectify the put operation by sending it to the new primary owner for the given key automatically, however there are no guarantees in regards to if the write was first replicated to backups. Thus more than 1 of the following write events (CacheEntryCreatedEvent
, CacheEntryModifiedEvent
& CacheEntryRemovedEvent
) may be sent on a single operation.
If more than one event is generated Infinispan will mark the event that it was generated by a retried command to help the user to know when this occurs without having to pay attention to view changes.
@Listener
public class MyRetryListener {
@CacheEntryModified
public void entryModified(CacheEntryModifiedEvent event) {
if (event.isCommandRetried()) {
// Do something
}
}
}
Also when using a CacheEventFilter
or CacheEventConverter
the EventType contains a method isRetry
to tell if the event was generated due to retry.
3.3.2. Cache manager-level notifications
Cache manager-level events occur on a cache manager. These too are global and cluster-wide, but involve events that affect all caches created by a single cache manager. Examples of cache manager-level events are nodes joining or leaving a cluster, or caches starting or stopping.
See the org.infinispan.notifications.cachemanagerlistener.annotation package for a comprehensive list of all cache manager-level notifications, and their respective method-level annotations.
3.3.3. Synchronicity of events
By default, all async notifications are dispatched in the notification thread pool. Sync notifications will delay the operation from continuing until the listener method completes or the CompletionStage completes (the former causing the thread to block). Alternatively, you could annotate your listener as asynchronous in which case the operation will continue immediately, while the notification is completed asynchronously on the notification thread pool. To do this, simply annotate your listener such:
Asynchronous Listener
@Listener (sync = false)
public class MyAsyncListener {
@CacheEntryCreated
void listen(CacheEntryCreatedEvent event) { }
}
Blocking Synchronous Listener
@Listener
public class MySyncListener {
@CacheEntryCreated
void listen(CacheEntryCreatedEvent event) { }
}
Non-Blocking Listener
@Listener
public class MyNonBlockingListener {
@CacheEntryCreated
CompletionStage<Void> listen(CacheEntryCreatedEvent event) { }
}
Asynchronous thread pool
To tune the thread pool used to dispatch such asynchronous notifications, use the <listener-executor />
XML element in your configuration file.
3.4. Asynchronous API
In addition to synchronous API methods like Cache.put() , Cache.remove() , etc., Infinispan also has an asynchronous, non-blocking API where you can achieve the same results in a non-blocking fashion.
These methods are named in a similar fashion to their blocking counterparts, with "Async" appended. E.g., Cache.putAsync() , Cache.removeAsync() , etc. These asynchronous counterparts return a CompletableFuture that contains the actual result of the operation.
For example, in a cache parameterized as Cache<String, String>
, Cache.put(String key, String value)
returns String
while Cache.putAsync(String key, String value)
returns CompletableFuture<String>
.
3.4.1. Why use such an API?
Non-blocking APIs are powerful in that they provide all of the guarantees of synchronous communications - with the ability to handle communication failures and exceptions - with the ease of not having to block until a call completes. This allows you to better harness parallelism in your system. For example:
Set<CompletableFuture<?>> futures = new HashSet<>();
futures.add(cache.putAsync(key1, value1)); // does not block
futures.add(cache.putAsync(key2, value2)); // does not block
futures.add(cache.putAsync(key3, value3)); // does not block
// the remote calls for the 3 puts will effectively be executed
// in parallel, particularly useful if running in distributed mode
// and the 3 keys would typically be pushed to 3 different nodes
// in the cluster
// check that the puts completed successfully
for (CompletableFuture<?> f: futures) f.get();
3.4.2. Which processes actually happen asynchronously?
There are 4 things in Infinispan that can be considered to be on the critical path of a typical write operation. These are, in order of cost:
-
network calls
-
marshalling
-
writing to a cache store (optional)
-
locking
Using the async methods will take the network calls and marshalling off the critical path. For various technical reasons, writing to a cache store and acquiring locks, however, still happens in the caller’s thread.
4. Configuring Cache Encoding
Infinispan saves your data in a specific format that can be converted on-the-fly when you read and write to and from caches. configure the storage format by specifying a MediaType for keys and values, which describes the format of the data.
Infinispan can also convert data between different storage formats to handle interoperability between different client protocols and when using custom code to process data.
4.1. Cache Encoding and Client Interoperability
The encoding that you use for your data affects client interoperability and capabilities such as Infinispan Search.
Store data in Protobuf format to use it with… | |
---|---|
Infinispan Console |
Yes |
REST clients |
Yes |
Java Hot Rod clients |
Yes |
Non-Java Hot Rod clients |
Yes |
Infinispan Search |
Yes |
Custom Java objects |
Yes |
Store data in a text-based format to use it with… | |
---|---|
Infinispan Console |
Yes |
REST clients |
Yes |
Java Hot Rod clients |
Yes |
Non-Java Hot Rod clients |
Yes |
Infinispan Search |
No |
Custom Java objects |
No |
Marshalled Java objects are compatible with… | |
---|---|
Infinispan Console |
No |
REST clients |
Yes |
Java Hot Rod clients |
Yes |
Non-Java Hot Rod clients |
No |
Infinispan Search |
No |
Plain Old Java Objects (POJOs) are not recommended but compatible with… | |
---|---|
Infinispan Console |
No |
REST clients |
Yes |
Java Hot Rod clients |
Yes |
Non-Java Hot Rod clients |
No |
Infinispan Search |
Yes. However, you must annotate entities to search with POJOs and make your classes available to Infinispan Server. |
Custom Java objects |
Yes |
4.1.1. Configuring Cache Encoding for Memcached Clients
Infinispan Server disables the Memcached endpoint by default. If you enable the Memcached endpoint, you should configure caches with a suitable encoding for Memcached clients.
The Memcached endpoint does not support authentication. For security purposes you should use dedicated caches for Memcached clients. You should not use REST or Hot Rod clients to interact on the same data set as Memcached clients. |
-
Configure cache encoding to use
text/plain
for keys. -
Specify any appropriate MediaType, other than
application/x-java- object
, for values.Memcached clients can handle keys as
text/plain
only. Values can be any MediaType that Infinispan stores asbyte[]
, which can be Protobuf, marshalled Java objects, or a text-based format.<encoding> <key media-type="text/plain"/> <value media-type="application/x-protostream"/> </encoding>
The Memcached endpoint includes a For example, as in the preceding configuration example, you store values encoded as Protobuf. If you want Memcached clients to read and write values as JSON, you can use the following configuration:
|
4.2. Configuring Encoding for Infinispan Caches
Define the MediaType that Infinispan uses to encode your data when writing and reading to and from the cache.
When you define a MediaType, you specify the format of your data to Infinispan. If you want to use the Infinispan Console, Hot Rod clients, and REST clients
interchangeably, specify the |
-
Specify a MediaType for key and values in your Infinispan cache configuration.
-
Declaratively: Set the
encoding
attribute. -
Programmatically: Use the
encoding()
method.
-
-
Use the same encoding for keys and values:
<local-cache>
<encoding media-type="application/x-protostream"/>
</local-cache>
-
Use a different encoding for keys and values:
<cache>
<encoding>
<key media-type="application/x-java-object"/>
<value media-type="application/xml; charset=UTF-8"/>
</encoding>
</cache>
-
Use the same encoding for keys and values:
ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg
.encoding()
.mediaType("application/x-protostream")
.build());
-
Use a different encoding for keys and values:
ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("text/plain");
cfg.encoding().value().mediaType("application/json");
4.3. Storing Data in Protobuf Format
Storing data in the cache as Protobuf encoded entries provides a platform independent configuration that enables you to perform cache operations from any client.
When you configure indexing for Infinispan Search, Infinispan automatically
stores keys and values with the |
-
Specify
application/x-protostream
as the MediaType for keys and values as follows:<distributed-cache name="mycache"> <encoding> <key media-type="application/x-protostream"/> <value media-type="application/x-protostream"/> </encoding> </distributed-cache>
-
Configure your clients.
Hot Rod clients must register Protocol Buffers schema definitions that describe entities and client marshallers.
Infinispan converts between application/x-protostream
and application/json
so REST clients only need to send the following headers to read and write JSON
formatted data:
-
Accept: application/json
for read operations. -
Content-Type: application/json
for write operations.
4.4. Storing Data in Text-Based Formats
Configure Infinispan to store data in a text-based format such as text/
plain
, application/json
, or application/xml
.
-
Specify a text-based storage format as the MediaType for keys and values.
-
Optionally specify a character set such as
UTF-8
.The following example configures Infinispan to store entries with the
text/plain; charset=UTF-8
format:<cache> <encoding> <key media-type="text/plain; charset=UTF-8"/> <value media-type="text/plain; charset=UTF-8"/> </encoding> </cache>
-
Configure your clients.
Hot Rod clients can use org.infinispan.commons.marshall.StringMarshaller
to handle plain text, JSON, XML, or any other text-based format.
You can also use text-based formats with the ProtoStream marshaller.
ProtoStream can handle String
and byte[]
types natively, without the need
to create Serialization Contexts and register Protobuf schemas (.proto
files).
REST clients must send the correct headers with requests:
-
Accept: text/plain; charset=UTF-8
for read operations. -
Content-Type: text/plain; charset=UTF-8
for write operations.
4.5. Storing Marshalled Java Objects
Java Hot Rod clients can handle Java objects that represent entities and
perform marshalling to serialize and deserialize objects into byte[]
arrays.
C++, C#, and Javascript Hot Rod clients can also handle objects in the
respective languages.
If you store entries in the cache as marshalled Java objects, you should configure the cache with the MediaType of the marshalled storage.
-
Specify the MediaType that matches your marshaller implementation.
-
Protostream marshaller: Configure the MediaType as
application/x-protostream
. -
JBoss marshalling: Configure the MediaType as
application/x-jboss-marshalling
. -
Java serialization: Configure the MediaType as
application/x-java-serialized-object
.
-
-
Configure your clients.
Because REST clients are most suitable for handling text formats, you should
use primitives such as java.lang.String
for keys. Otherwise, REST clients
must handle keys as bytes[]
using a supported binary encoding.
REST clients can read values for cache entries in XML or JSON format.
When storing data in binary format, Infinispan uses the WrappedBytes
interface for keys and values. This wrapper class transparently takes care of
serialization and deserialization on demand, and internally may have a
reference to the object itself being wrapped, or the serialized, byte array
representation of the object. This has an effect on the behavior of equality,
which is important to note if you implement an equals()
methods on keys.
The equals()
method of the wrapper class either compares binary
representations (byte arrays) or delegates to the wrapped object instance’s
equals()
method, depending on whether both instances being compared are in
serialized or deserialized form at the time of comparison. If one of the
instances being compared is in one form and the other in another form, then one
instance is either serialized or deserialized.
4.6. Storing Unmarshalled Java Objects
You can store data as deserialized Plain Old Java Objects (POJO) instead of storing data in a binary format.
Storing POJO instead of binary format is not recommended because it requires Infinispan to serialize data on client read operations and deserialize data on write operations. To handle client interoperability with custom code you should convert data on demand.
-
Specify
application/x-java-object
as the MediaType for keys and values as follows:<distributed-cache name="my-cache"> <encoding> <key media-type="application/x-java-object"/> <value media-type="application/x-java-object"/> </encoding> </distributed-cache>
-
Put class files for all custom objects on the Infinispan server classpath.
Add JAR files that contain custom classes and/or service providers for marshaller implementations in the
server/lib
directory.├── server │ ├── lib │ │ ├── UserObjects.jar │ └── README.txt
-
Configure your clients.
There are no changes required for Hot Rod clients. The only requirement is that the marshaller used in the client is available in the server/lib
directory so Infinispan can de-serialize the objects.
ProtoStream and Java Serialization marshallers are already available on the server. |
REST clients must use either JSON or XML so Infinispan can convert to and from Java objects.
4.7. Data Encoding
Encoding is the data conversion operation done by Infinispan caches before storing data, and when reading back from storage.
4.7.1. Overview
Encoding allows dealing with a certain data format during API calls (map, listeners, stream, etc) while the format effectively stored is different.
The data conversions are handled by instances of org.infinispan.commons.dataconversion.Encoder :
public interface Encoder {
/**
* Convert data in the read/write format to the storage format.
*
* @param content data to be converted, never null.
* @return Object in the storage format.
*/
Object toStorage(Object content);
/**
* Convert from storage format to the read/write format.
*
* @param content data as stored in the cache, never null.
* @return data in the read/write format
*/
Object fromStorage(Object content);
/**
* Returns the {@link MediaType} produced by this encoder or null if the storage format is not known.
*/
MediaType getStorageFormat();
}
4.7.2. Default encoders
Infinispan automatically picks the Encoder depending on the cache configuration. The table below shows which internal Encoder is used for several configurations:
Mode | Configuration | Encoder | Description |
---|---|---|---|
Embedded/Server |
Default |
IdentityEncoder |
Passthrough encoder, no conversion done |
Embedded |
StorageType.OFF_HEAP |
GlobalMarshallerEncoder |
Use the Infinispan internal marshaller to convert to byte[]. May delegate to the configured marshaller in the cache manager. |
Embedded |
StorageType.BINARY |
BinaryEncoder |
Use the Infinispan internal marshaller to convert to byte[], except for primitives and String. |
Server |
StorageType.OFF_HEAP |
IdentityEncoder |
Store byte[]s directly as received by remote clients |
4.7.3. Overriding programmatically
It is possible to override programmatically the encoding used for both keys and values, by calling the .withEncoding() method variants from AdvancedCache.
Example, consider the following cache configured as OFF_HEAP:
// Read and write POJO, storage will be byte[] since for
// OFF_HEAP the GlobalMarshallerEncoder is used internally:
cache.put(1, new Pojo())
Pojo value = cache.get(1)
// Get the content in its stored format by overriding
// the internal encoder with a no-op encoder (IdentityEncoder)
Cache<?,?> rawContent = cache.getAdvancedCache().withEncoding(IdentityEncoder.class);
byte[] marshalled = (byte[]) rawContent.get(1);
The override can be useful if any operation in the cache does not require decoding, such as counting number of entries, or calculating the size of byte[] of an OFF_HEAP cache.
4.7.4. Defining Custom Encoders
A custom encoder can be registered in the EncoderRegistry.
Ensure that the registration is done in every node of the cluster, before starting the caches. |
Consider a custom encoder used to compress/decompress with gzip:
public class GzipEncoder implements Encoder {
@Override
public Object toStorage(Object content) {
assert content instanceof String;
return compress(content.toString());
}
@Override
public Object fromStorage(Object content) {
assert content instanceof byte[];
return decompress((byte[]) content);
}
private byte[] compress(String str) {
try (ByteArrayOutputStream baos = new ByteArrayOutputStream();
GZIPOutputStream gis = new GZIPOutputStream(baos)) {
gis.write(str.getBytes("UTF-8"));
gis.close();
return baos.toByteArray();
} catch (IOException e) {
throw new RuntimeException("Unabled to compress", e);
}
}
private String decompress(byte[] compressed) {
try (GZIPInputStream gis = new GZIPInputStream(new ByteArrayInputStream(compressed));
BufferedReader bf = new BufferedReader(new InputStreamReader(gis, "UTF-8"))) {
StringBuilder result = new StringBuilder();
String line;
while ((line = bf.readLine()) != null) {
result.append(line);
}
return result.toString();
} catch (IOException e) {
throw new RuntimeException("Unable to decompress", e);
}
}
@Override
public MediaType getStorageFormat() {
return MediaType.parse("application/gzip");
}
@Override
public boolean isStorageFormatFilterable() {
return false;
}
@Override
public short id() {
return 10000;
}
}
It can be registered by:
GlobalComponentRegistry registry = cacheManager.getGlobalComponentRegistry();
EncoderRegistry encoderRegistry = registry.getComponent(EncoderRegistry.class);
encoderRegistry.registerEncoder(new GzipEncoder());
And then be used to write and read data from a cache:
AdvancedCache<String, String> cache = ...
// Decorate cache with the newly registered encoder, without encoding keys (IdentityEncoder)
// but compressing values
AdvancedCache<String, String> compressingCache = (AdvancedCache<String, String>) cache.withEncoding(IdentityEncoder.class, GzipEncoder.class);
// All values will be stored compressed...
compressingCache.put("297931749", "0412c789a37f5086f743255cfa693dd5");
// ... but API calls deals with String
String stringValue = compressingCache.get("297931749");
// Bypassing the value encoder to obtain the value as it is stored
Object value = compressingCache.withEncoding(IdentityEncoder.class).get("297931749");
// value is a byte[] which is the compressed value
4.8. Transcoders and Data Conversion
Infinispan uses org.infinispan.commons.dataconversion.Transcoder
to convert
data between MediaType formats.
public interface Transcoder {
/**
* Transcodes content between two different {@link MediaType}.
*
* @param content Content to transcode.
* @param contentType The {@link MediaType} of the content.
* @param destinationType The target {@link MediaType} to convert.
* @return the transcoded content.
*/
Object transcode(Object content, MediaType contentType, MediaType destinationType);
/**
* @return all the {@link MediaType} handled by this Transcoder.
*/
Set<MediaType> getSupportedMediaTypes();
}
4.8.1. Converting Data on Demand
You can deploy and run custom code on Infinispan, such as tasks, listeners, and merge policies. Custom code on Infinispan can directly access data but must also interoperate with clients that access the same data through different endpoints. For example, you can create tasks that handle custom objects while Hot Rod clients read and write data in binary format.
In this case, you can configure application/x-protostream
as the cache
encoding to store data in binary format then configure your custom code to
perform cache operations using a different MediaType.
For example:
DefaultCacheManager cacheManager = new DefaultCacheManager();
// The cache will store POJO for keys and values
ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("application/x-java-object");
cfg.encoding().value().mediaType("application/x-java-object");
cacheManager.defineConfiguration("mycache", cfg.build());
Cache<Integer, Person> cache = cacheManager.getCache("mycache");
cache.put(1, new Person("John","Doe"));
// Wraps cache using 'application/x-java-object' for keys but JSON for values
Cache<Integer, byte[]> jsonValuesCache = (Cache<Integer, byte[]>) cache.getAdvancedCache().withMediaType("application/x-java-object", "application/json");
byte[] json = jsonValuesCache.get(1);
Will return the value in JSON format:
{
"_type":"org.infinispan.sample.Person",
"name":"John",
"surname":"Doe"
}
4.8.2. Installing Transcoders in Embedded Deloyments
Infinispan Server includes transcoders by default. However, when running Infinispan as a library, you must add the following to your project:
org.infinispan:infinispan-server-core
4.8.3. Transcoders and Encoders
Usually there will be none or only one data conversion involved in a cache operation:
-
No conversion by default on caches using in embedded or server mode;
-
Encoder based conversion for embedded caches without MediaType configured, but using OFF_HEAP or BINARY;
-
Transcoder based conversion for caches used in server mode with multiple REST and Hot Rod clients sending and receiving data in different formats. Those caches will have MediaType configured describing the storage.
But it’s possible to have both encoders and transcoders being used simultaneously for advanced use cases.
Consider an example, a cache that stores marshalled objects (with jboss marshaller) content but for security reasons a transparent encryption layer should be added in order to avoid storing "plain" data to an external store. Clients should be able to read and write data in multiple formats.
This can be achieved by configuring the cache with the the MediaType that describes the storage regardless of the encoding layer:
ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("application/x-jboss-marshalling");
cfg.encoding().key().mediaType("application/x-jboss-marshalling");
The transparent encryption can be added by decorating the cache with a special Encoder that encrypts/decrypts with storing/retrieving, for example:
class Scrambler implements Encoder {
public Object toStorage(Object content) {
// Encrypt data
}
public Object fromStorage(Object content) {
// Decrypt data
}
@Override
public boolean isStorageFormatFilterable() {
}
public MediaType getStorageFormat() {
return new MediaType("application", "scrambled");
}
@Override
public short id() {
//return id
}
}
To make sure all data written to the cache will be stored encrypted, it’s necessary to decorate the cache with the Encoder above and perform all cache operations in this decorated cache:
Cache<?,?> secureStorageCache = cache.getAdvancedCache().withEncoding(Scrambler.class).put(k,v);
The capability of reading data in multiple formats can be added by decorating the cache with the desired MediaType:
// Obtain a stream of values in XML format from the secure cache
secureStorageCache.getAdvancedCache().withMediaType("application/xml","application/xml").values().stream();
Internally, Infinispan will first apply the encoder fromStorage operation to obtain the entries, that will be in "application/x-jboss-marshalling" format and then apply a successive conversion to "application/xml" by using the adequate Transcoder.
5. Configuring Infinispan to Marshall Java Objects
Marshalling converts Java objects into binary format so they can be transferred over the wire or stored to disk. The reverse process, unmarshalling, transforms data from binary format into Java objects.
Infinispan performs marshalling and unmarshalling to:
-
Send data to other Infinispan nodes in a cluster.
-
Store data in persistent cache stores.
-
Store data in binary format to provide deserialization capabilities.
5.1. Supported Types
Infinispan uses a ProtoStream API to encode and decode Java objects into Protocol Buffers (Protobuf); a language-neutral, backwards compatible format.
ProtoStream can handle the following types for keys and values, as well as the unboxed equivalents in the case of primitive types:
-
byte[]
-
Byte
-
String
-
Integer
-
Long
-
Double
-
Float
-
Boolean
-
Short
-
Character
-
java.util.Date
-
java.time.Instant
5.2. Marshalling User Types with ProtoStream
User types are Java objects that Infinispan does not natively support.
To marshall user types, Infinispan requires a ProtoStream SerializationContext
that represents Java objects in a structured format.
A SerializationContext
contains Protobuf type definitions, loaded from Protobuf schemas (.proto
files), and the accompanying marshallers for custom Java objects.
A SerializationContextInitializer
is an interface that initializes a SerializationContext
so that Infinispan can marshall user types.
5.2.1. Generating Serialization Context Initializers
Infinispan provides a protostream-processor
artifact processes Java annotations in your classes at compile time to generate Protobuf schemas, marshallers, and a concrete implementation of the SerializationContextInitializer
interface.
By default, implementation names are the annotated class name with an "Impl" suffix. |
-
Add the
protostream-processor
dependency to yourpom.xml
.<dependencyManagement> <dependencies> <dependency> <groupId>org.infinispan</groupId> <artifactId>infinispan-bom</artifactId> <version>${version.infinispan}</version> <type>pom</type> </dependency> </dependencies> </dependencyManagement> <dependencies> <dependency> <groupId>org.infinispan.protostream</groupId> <artifactId>protostream-processor</artifactId> <!-- This dependency should be declared in the "provided" scope or made "optional" because it is a compile-only dependency and is not required at runtime. Transitive propagation of this dependency should be also be avoided. --> <scope>provided</scope> </dependency> </dependencies>
-
Annotate the Java objects that you want to marshall with
@ProtoField
and@ProtoFactory
.Author.javaimport org.infinispan.protostream.annotations.ProtoFactory; import org.infinispan.protostream.annotations.ProtoField; public class Author { @ProtoField(number = 1) final String name; @ProtoField(number = 2) final String surname; @ProtoFactory Author(String name, String surname) { this.name = name; this.surname = surname; } // public Getter methods omitted for brevity }
Book.javaimport org.infinispan.protostream.annotations.ProtoFactory; import org.infinispan.protostream.annotations.ProtoField; ... public class Book { @ProtoField(number = 1) final String title; @ProtoField(number = 2) final String description; @ProtoField(number = 3, defaultValue = "0") final int publicationYear; @ProtoField(number = 4, collectionImplementation = ArrayList.class) final List<Author> authors; @ProtoFactory Book(String title, String description, int publicationYear, List<Author> authors) { this.title = title; this.description = description; this.publicationYear = publicationYear; this.authors = authors; } // public Getter methods omitted for brevity }
-
If necessary, create an adaptor class for any external, third-party Java object classes and add the
@ProtoAdaptor
annotation.@ProtoAdapter(UUID.class) public class UUIDAdapter { @ProtoFactory UUID create(Long mostSigBitsFixed, Long leastSigBitsFixed) { return new UUID(mostSigBitsFixed, leastSigBitsFixed); } @ProtoField(number = 1, type = Type.FIXED64, defaultValue = "0") Long getMostSigBitsFixed(UUID uuid) { return uuid.getMostSignificantBits(); } @ProtoField(number = 2, type = Type.FIXED64, defaultValue = "0") Long getLeastSigBitsFixed(UUID uuid) { return uuid.getLeastSignificantBits(); } }
-
Define an interface that extends
SerializationContextInitializer
. -
Annotate the interface with
@AutoProtoSchemaBuilder
so that Infinispan automatically registers yourSerializationContextInitializer
implementation.@AutoProtoSchemaBuilder( includeClasses = { Book.class, Author.class, UUIDAdapter.class, }, schemaFileName = "library.proto", (1) schemaFilePath = "proto/", (2) schemaPackageName = "book_sample") interface LibraryInitializer extends SerializationContextInitializer { }
1 Names the generated .proto
schema file.2 Sets the path under target/classes
where the schema file is generated.
5.2.2. Manually Registering Serialization Context Initializers
If you prefer, you can disable automatic registration of SerializationContextInitializer
implementations and then register them manually.
Manually registering |
-
Set a value of
false
for theAutoProtoSchemaBuilder.service
annotation.@AutoProtoSchemaBuilder( includeClasses = SomeClass.class, ... service = false )
-
Manually register
SerializationContextInitializer
implementations either programmatically or declaratively, as in the following examples:
GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder();
builder.serialization()
.addContextInitializers(new LibraryInitializerImpl(), new SCIImpl());
<serialization>
<context-initializer class="org.infinispan.example.LibraryInitializerImpl"/>
<context-initializer class="org.infinispan.example.another.SCIImpl"/>
</serialization>
5.3. Configuring Alternative Marshaller Implementations
Infinispan provides Marshaller implementations that you can use instead of ProtoStream. You can also configure Infinispan to use custom marshaller implementations.
5.3.1. Using JBoss Marshalling
JBoss Marshalling is a serialization-based marshalling library and was the default marshaller in previous Infinispan versions.
|
-
Add the
infinispan-jboss-marshalling
dependency to your classpath. -
Configure Infinispan to use the
GenericJBossMarshaller
. -
Add your Java classes to the deserialization allowlist.
-
Programmatically:
GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder(); builder.serialization() .marshaller(new GenericJBossMarshaller()) .allowList() .addRegexps("org.infinispan.example.", "org.infinispan.concrete.SomeClass");
-
Declaratively:
<serialization marshaller="org.infinispan.jboss.marshalling.commons.GenericJBossMarshaller"> <allow-list> <class>org.infinispan.concrete.SomeClass</class> <regex>org.infinispan.example.*</regex> </allow-list> </serialization>
-
5.3.2. Using Java Serialization
You can use Java serialization with Infinispan to marshall your objects, but
only if your Java objects implement the Java Serializable
interface.
-
Configure Infinispan to use
JavaSerializationMarshaller
as the marshaller. -
Add your Java classes to the deserialization allowlist.
-
Programmatically:
GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder(); builder.serialization() .marshaller(new JavaSerializationMarshaller()) .allowList() .addRegexps("org.infinispan.example.", "org.infinispan.concrete.SomeClass");
-
Declaratively:
<serialization marshaller="org.infinispan.commons.marshall.JavaSerializationMarshaller"> <allow-list> <class>org.infinispan.concrete.SomeClass</class> <regex>org.infinispan.example.*</regex> </allow-list> </serialization>
-
5.3.3. Using the Kryo Marshaller
Kryo marshaller is now deprecated and planned for removal. You should replace any Kyro marshaller usage with ProtoStream marshalling. |
Infinispan provides a marshalling implementation that uses Kryo libraries.
To use Kryo marshalling with Infinispan servers, add a JAR that includes the runtime class files for the Kryo marshalling implementation as follows:
-
Download the Kryo Bundle.
-
Add the JAR file to the
server/lib
directory in your Infinispan server installation directory.
To use Kryo marshalling with Infinispan as an embedded library in your application, do the following:
-
Add the
infinispan-marshaller-kryo
dependency to yourpom.xml
.<dependency> <groupId>org.infinispan</groupId> <artifactId>infinispan-marshaller-kryo</artifactId> <version>${version.infinispan}</version> </dependency>
-
Specify the
org.infinispan.marshaller.kryo.KryoMarshaller
class as the marshaller.GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder(); builder.serialization() .marshaller(new org.infinispan.marshaller.kryo.KryoMarshaller());
-
Implement a service provider for the
SerializerRegistryService.java
interface. -
Place all serializer registrations in the
register(Kryo)
method; where serializers are registered with the suppliedKryo
object using the Kryo API, for example:kryo.register(ExampleObject.class, new ExampleObjectSerializer())
-
Specify the full path of implementing classes in your deployment JAR file within:
META-INF/services/org/infinispan/marshaller/kryo/SerializerRegistryService
5.3.4. Using the Protostuff Marshaller
Protostuff marshaller is now deprecated and planned for removal. You should replace any Protostuff marshaller usage with ProtoStream marshalling. |
Infinispan provides a marshalling implementation that uses Protostuff libraries.
To use Protostuff marshalling with Infinispan servers, add a JAR that includes the runtime class files for the Protostuff marshalling implementation as follows:
-
Download the Protostuff Bundle JAR.
-
Add the JAR file to the
server/lib
directory in your Infinispan server installation directory.
To use Protostuff marshalling with Infinispan as an embedded library in your application, do the following:
-
Add the
infinispan-marshaller-protostuff
dependency to yourpom.xml
.<dependency> <groupId>org.infinispan</groupId> <artifactId>infinispan-marshaller-protostuff</artifactId> <version>${version.infinispan}</version> </dependency>
-
Specify the
org.infinispan.marshaller.protostuff.ProtostuffMarshaller
class as the marshaller.GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder(); builder.serialization() .marshaller(new org.infinispan.marshaller.protostuff.ProtostuffMarshaller());
Do one of the following to register custom Protostuff schemas for object marshalling:
-
Call the
register()
method.RuntimeSchema.register(ExampleObject.class, new ExampleObjectSchema());
-
Implement a service provider for the
SerializerRegistryService.java
interface that places all schema registrations in theregister()
method.You should then specify the full path of implementing classes in your deployment JAR file within:
META-INF/services/org/infinispan/marshaller/protostuff/SchemaRegistryService
5.3.5. Using Custom Marshallers
Infinispan provides a Marshaller
interface that you can implement for custom marshallers.
-
Implement the
Marshaller
interface. -
Configure Infinispan to use your marshaller.
-
Add your Java classes to the deserialization allowlist.
-
Programmatically:
GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder(); builder.serialization() .marshaller(new org.infinispan.example.marshall.CustomMarshaller()) .allowList().addRegexp("org.infinispan.example.*");
-
Declaratively:
<serialization marshaller="org.infinispan.example.marshall.CustomMarshaller"> <allow-list> <class>org.infinispan.concrete.SomeClass</class> <regex>org.infinispan.example.*</regex> </allow-list> </serialization>
-
Custom marshaller implementations can access a configured access list via the initialize() method, which is called during startup. |
5.3.6. Adding Java Classes to Deserialization Allow Lists
Infinispan does not allow deserialization of arbritrary Java classes for
security reasons, which applies to JSON, XML, and marshalled byte[]
content.
You must add Java classes to a deserialization allow list, either using system properties or specifying them in the Infinispan configuration.
// Specify a comma-separated list of fully qualified class names
-Dinfinispan.deserialization.allowlist.classes=java.time.Instant,com.myclass.Entity
// Specify a regular expression to match classes
-Dinfinispan.deserialization.allowlist.regexps=.*
<cache-container>
<serialization version="1.0" marshaller="org.infinispan.marshall.TestObjectStreamMarshaller">
<allow-list>
<class>org.infinispan.test.data.Person</class>
<regex>org.infinispan.test.data.*</regex>
</allow-list>
</serialization>
</cache-container>
Java classes that you add to the deserialization allow list apply to the
Infinispan |
6. Clustered Locks
Clustered locks are data structures that are distributed and shared across nodes in a Infinispan cluster. Clustered locks allow you to run code that is synchronized between nodes.
6.1. Lock API
Infinispan provides a ClusteredLock
API that lets you concurrently execute
code on a cluster when using Infinispan in embedded mode.
The API consists of the following:
-
ClusteredLock
exposes methods to implement clustered locks. -
ClusteredLockManager
exposes methods to define, configure, retrieve, and remove clustered locks. -
EmbeddedClusteredLockManagerFactory
initializesClusteredLockManager
implementations.
Infinispan supports NODE
ownership so that all nodes in a cluster can use a
lock.
Infinispan clustered locks are non-reentrant so any node in the cluster can acquire a lock but only the node that creates the lock can release it.
If two consecutive lock calls are sent for the same owner, the first call acquires the lock if it is available and the second call is blocked.
6.2. Using Clustered Locks
Learn how to use clustered locks with Infinispan embedded in your application.
-
Add the
infinispan-clustered-lock
dependency to yourpom.xml
:
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-clustered-lock</artifactId>
</dependency>
-
Initialize the
ClusteredLockManager
interface from a Cache Manager. This interface is the entry point for defining, retrieving, and removing clustered locks. -
Give a unique name for each clustered lock.
-
Acquire locks with the
lock.tryLock(1, TimeUnit.SECONDS)
method.
// Set up a clustered Cache Manager.
GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder();
// Configure the cache mode, in this case it is distributed and synchronous.
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.clustering().cacheMode(CacheMode.DIST_SYNC);
// Initialize a new default Cache Manager.
DefaultCacheManager cm = new DefaultCacheManager(global.build(), builder.build());
// Initialize a Clustered Lock Manager.
ClusteredLockManager clm1 = EmbeddedClusteredLockManagerFactory.from(cm);
// Define a clustered lock named 'lock'.
clm1.defineLock("lock");
// Get a lock from each node in the cluster.
ClusteredLock lock = clm1.get("lock");
AtomicInteger counter = new AtomicInteger(0);
// Acquire the lock as follows.
// Each 'lock.tryLock(1, TimeUnit.SECONDS)' method attempts to acquire the lock.
// If the lock is not available, the method waits for the timeout period to elapse. When the lock is acquired, other calls to acquire the lock are blocked until the lock is released.
CompletableFuture<Boolean> call1 = lock.tryLock(1, TimeUnit.SECONDS).whenComplete((r, ex) -> {
if (r) {
System.out.println("lock is acquired by the call 1");
lock.unlock().whenComplete((nil, ex2) -> {
System.out.println("lock is released by the call 1");
counter.incrementAndGet();
});
}
});
CompletableFuture<Boolean> call2 = lock.tryLock(1, TimeUnit.SECONDS).whenComplete((r, ex) -> {
if (r) {
System.out.println("lock is acquired by the call 2");
lock.unlock().whenComplete((nil, ex2) -> {
System.out.println("lock is released by the call 2");
counter.incrementAndGet();
});
}
});
CompletableFuture<Boolean> call3 = lock.tryLock(1, TimeUnit.SECONDS).whenComplete((r, ex) -> {
if (r) {
System.out.println("lock is acquired by the call 3");
lock.unlock().whenComplete((nil, ex2) -> {
System.out.println("lock is released by the call 3");
counter.incrementAndGet();
});
}
});
CompletableFuture.allOf(call1, call2, call3).whenComplete((r, ex) -> {
// Print the value of the counter.
System.out.println("Value of the counter is " + counter.get());
// Stop the Cache Manager.
cm.stop();
});
6.3. Configuring Internal Caches for Locks
Clustered Lock Managers include an internal cache that stores lock state. You can configure the internal cache either declaratively or programmatically.
-
Define the number of nodes in the cluster that store the state of clustered locks. The default value is
-1
, which replicates the value to all nodes. -
Specify one of the following values for the cache reliability, which controls how clustered locks behave when clusters split into partitions or multiple nodes leave:
-
AVAILABLE
: Nodes in any partition can concurrently operate on locks. -
CONSISTENT
: Only nodes that belong to the majority partition can operate on locks. This is the default value. -
Programmatic configuration
import org.infinispan.lock.configuration.ClusteredLockManagerConfiguration; import org.infinispan.lock.configuration.ClusteredLockManagerConfigurationBuilder; import org.infinispan.lock.configuration.Reliability; ... GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder(); final ClusteredLockManagerConfiguration config = global.addModule(ClusteredLockManagerConfigurationBuilder.class).numOwner(2).reliability(Reliability.AVAILABLE).create(); DefaultCacheManager cm = new DefaultCacheManager(global.build()); ClusteredLockManager clm1 = EmbeddedClusteredLockManagerFactory.from(cm); clm1.defineLock("lock");
-
Declarative configuration
<?xml version="1.0" encoding="UTF-8"?> <infinispan xmlns="urn:infinispan:config:12.0"> ... <cache-container default-cache="default"> <transport/> <local-cache name="default"> <locking concurrency-level="100" acquire-timeout="1000"/> </local-cache> <clustered-locks xmlns="urn:infinispan:config:clustered-locks:12.0" num-owners = "3" reliability="AVAILABLE"> <clustered-lock name="lock1" /> <clustered-lock name="lock2" /> </clustered-locks> </cache-container> ... </infinispan>
-
7. Querying Values in Caches
Infinispan lets you perform queries to efficiently and quickly look up values in your data set, both with embedded Infinispan clusters or remote Infinispan server clusters.
You can index and query cache values stored as Plain Old Java Objects (POJOs) or objects encoded as Protocol Buffers only. |
7.1. Configuring Infinispan to Index Caches
Create indexes of values in your caches to improve query performance and use full-text search capabilities.
Infinispan uses Apache Lucene technology to index values in caches. |
-
Enable indexing in your cache configuration.
<distributed-cache name="my-cache"> <indexing> (1) ... </indexing> </distributed-cache>
1 Adding an <indexing>
element automatically enables indexing. You do not need to include theenabled
attribute, even though the default value of theenabled
attribute isfalse
in the configuration schema. -
Specify each entity that you want to index as a value for the
indexed-entity
element.<distributed-cache name="my-cache"> <indexing> <indexed-entities> <indexed-entity>...</indexed-entity> </indexed-entities> </indexing> </distributed-cache>
For caches that store POJOs, you specify the fully qualified class name that is annotated with @Indexed
, for example:
<indexed-entities>
<indexed-entity>org.infinispan.sample.Car</indexed-entity>
<indexed-entity>org.infinispan.sample.Truck</indexed-entity>
</indexed-entities>
For caches that store Protobuf-encoded entries, you specify the Message
declared in the Protobuf schema.
For example, you use the following Protobuf schema:
package book_sample;
/* @Indexed */
message Book {
/* @Field(store = Store.YES, analyze = Analyze.YES */
optional string title = 1;
/* @Field(store = Store.YES, analyze = Analyze.YES */
optional string description = 2;
optional int32 publicationYear = 3; // no native Date type available in Protobuf
repeated Author authors = 4;
}
message Author {
optional string name = 1;
optional string surname = 2;
}
You should then specify the following value for the indexed-entity
element:
<indexed-entities>
<indexed-entity>book_sample.Book</indexed-entity>
</indexed-entities>
7.1.1. Enabling Cache Indexing Programmatically
Configure indexing for caches programmatically via Infinispan APIs.
-
When using Infinispan as an embedded library, enable and configure indexing for caches with the
IndexingConfigurationBuilder
class, as in the following example:
import org.infinispan.configuration.cache.*;
ConfigurationBuilder config=new ConfigurationBuilder();
config.indexing().enable().storage(FILESYSTEM).path("/some/folder").addIndexedEntity(Book.class);
7.1.2. Index Annotations
When you enable indexing in Infinispan caches, you use the following annotations:
-
@Indexed
denotes a Java object that you want to index. -
@Field
controls how fields within objects are indexed.
For Infinispan as an embedded library, you add these annotations your Java classes.
For Infinispan Server, you define Protobuf schemas, .proto
files, that contain these annotations.
7.1.3. Index Configuration
Infinispan configuration controls how indexes are stored and constructed.
Index Storage
You can configure how Infinispan stores indexes:
-
On the host file system, which is the default and persists indexes between restarts.
-
In JVM heap memory, which means that indexes do not survive restarts.
You should store indexes in JVM heap memory only for small datasets.
<distributed-cache name="my-cache">
<indexing storage="filesystem" path="${java.io.tmpdir}/baseDir">
...
</indexing>
</distributed-cache>
<distributed-cache name="my-cache">
<indexing storage="local-heap">
...
</distributed-cache>
Index Reader
The index reader is an internal component that provides access to the indexes to perform queries. As the index content changes, Infinispan needs to refresh the reader so that search results are up to date. You can configure the refresh interval for the index reader. By default Infinispan reads the index before each query if the index changed since the last refresh.
<distributed-cache name="my-cache">
<indexing storage="filesystem" path="${java.io.tmpdir}/baseDir">
<index-reader refresh-interval="1000"/> (1)
...
</distributed-cache>
1 | Sets an interval of one second for the IndexReader . |
Index Writer
The index writer is an internal component that constructs an index composed of one or more segments (sub-indexes) that can be merged over time to improve performance. Fewer segments usually means less overhead during a query because index reader operations need to take into account all segments.
Infinispan uses Apache Lucene internally and indexes entries in two tiers: memory and storage. New entries go to the memory index first and then, when a flush happens, to the configured index storage. Periodic commit operations occur that create segments from the previously flushed data and make all the index changes permanent.
The |
<distributed-cache name="my-cache">
<indexing storage="filesystem" path="${java.io.tmpdir}/baseDir">
<index-writer commit-interval="2000"
low-level-trace="false"
max-buffered-entries="32"
queue-count="1"
queue-size="10000"
ram-buffer-size="400"
thread-pool-size="2">
<index-merge calibrate-by-deletes="true"
factor="3"
max-entries="2000"
min-size="10"
max-size="20"/>
</index-writer>
...
</distributed-cache>
Attribute | Description |
---|---|
|
Amount of time, in milliseconds, that index changes that are buffered in memory are flushed to the index storage and a commit is performed. Because operation is costly, small values should be avoided. The default is 1000 ms (1 second). |
|
Maximum number of entries that can be buffered in-memory before they are flushed to the index storage. Large values result in faster indexing but use more memory. When used in combination with the |
|
Maximum amount of memory that can be used for buffering added entries and deletions before they are flushed to the index storage. Large values result in faster indexing but use more memory. For faster indexing performance you should set this attribute instead of |
|
Number of threads that execute write operations to the index. |
|
Number of internal queues to use for each indexed type. Each queue holds a batch of modifications that is applied to the index and queues are processed in parallel. Increasing the number of queues will lead to an increase of indexing throughput, but only if the bottleneck is CPU. For optimum results, do not set a value for |
|
Maximum number of elements each queue can hold. Increasing the |
|
Enables low-level trace information for indexing operations. Enabling this attribute substantially degrades performance. You should use this low-level tracing only as a last resource for troubleshooting. |
To configure how Infinispan merges index segments, you use the index-merge
sub-element.
Attribute | Description |
---|---|
|
Maximum number of entries that an index segment can have before merging. Segments with more than this number of entries are not merged. Smaller values perform better on frequently changing indexes, larger values provide better search performance if the index does not change often. |
|
Number of segments that are merged at once. With smaller values, merging happens more often, which uses more resources, but the total number of segments will be lower on average, increasing search performance. Larger values (greater than 10) are best for heavy writing scenarios. |
|
Minimum target size of segments, in MB, for background merges. Segments smaller than this size are merged more aggressively. Setting a value that is too large might result in expensive merge operations, even though they are less frequent. |
|
Maximum size of segments, in MB, for background merges. Segments larger than this size are never merged in the background. Settings this to a lower value helps reduce memory requirements and avoids some merging operations at the cost of optimal search speed. This attribute is ignored when forcefully merging an index and |
|
Maximum size of segments, in MB, for forced merges and overrides the |
|
Whether the number of deleted entries in an index should be taken into account when counting the entries in the segment. Setting |
For more information about indexing elements and attributes, refer to the Infinispan Configuration Schema.
7.1.4. Rebuilding Indexes
Rebuilding an index reconstructs it from the data stored in the cache. You rebuild indexes when you change things like the definitions of indexed types or analyzers. Likewise, you might also need to rebuild indexes if they are deleted for some reason.
Rebuilding indexes can take a long time to complete because the process takes place for all data in the grid. While the rebuild operation is in progress, queries might also return fewer results. Infinispan logs the following warning message when you rebuild an index: WARN: Rebuilding indexes also affect queries, that can return less results than expected. |
-
Rebuild indexes on remote Infinispan servers by calling the
reindexCache()
method as follows:remoteCacheManager.administration().reindexCache("MyCache");
-
Rebuild indexes when using Infinispan as an embedded library as follows:
Indexer indexer = Search.getIndexer(cache); CompletionStage<Void> future = index.run();
7.2. Creating Ickle Queries
Infinispan provides an Ickle query language that lets you create relational and full-text queries.
7.2.1. Ickle Query Example
To use the API, first obtain a QueryFactory to the cache and then call the .create()
method, passing in the string to use in the query.
Each QueryFactory
instance is bound to the same Cache
instance as the Search
, but it is otherwise a stateless and thread-safe object that can be used for creating multiple queries in parallel.
For instance:
// Remote Query, using protobuf
QueryFactory qf = org.infinispan.client.hotrod.Search.getQueryFactory(remoteCache);
Query<Transaction> q = qf.create("from sample_bank_account.Transaction where amount > 20");
// Embedded Query using Java Objects
QueryFactory qf = org.infinispan.query.Search.getQueryFactory(cache);
Query<Transaction> q = qf.create("from org.infinispan.sample.Book where price > 20");
// Execute the query
QueryResult<Book> queryResult = q.execute();
A query will always target a single entity type and is evaluated over the contents of a single cache. Running a query over multiple caches or creating queries that target several entity types (joins) is not supported. |
Executing the query and fetching the results is as simple as invoking the execute()
method of the Query
object. Once
executed, calling execute()
on the same instance will re-execute the query.
Pagination
You can limit the number of returned results by using the Query.maxResults(int maxResults)
. This can be used in
conjunction with Query.startOffset(long startOffset)
to achieve pagination of the result set.
// sorted by year and match all books that have "clustering" in their title
// and return the third page of 10 results
Query<Book> query = queryFactory.create("FROM org.infinispan.sample.Book WHERE title like '%clustering%' ORDER BY year").startOffset(20).maxResults(10)
Number of Hits
The QueryResult
object has the .hitCount()
method to return the total number of results of the query, regardless
of any pagination parameter. The hit count is only available for indexed queries for performance reasons.
Iteration
The Query
object has the .iterator()
method to obtain the results lazily. It returns an instance of CloseableIterator
that must be closed after usage.
The iteration support for Remote Queries is currently limited, as it will first fetch all entries to the client before iterating. |
Named Query Parameters
Instead of building a new Query object for every execution it is possible to include named parameters in the query which
can be substituted with actual values before execution. This allows a query to be defined once and be efficiently
executed many times. Parameters can only be used on the right-hand side of an operator and are defined when the query is
created by supplying an object produced by the org.infinispan.query.dsl.Expression.param(String paramName)
method to
the operator instead of the usual constant value. Once the parameters have been defined they can be set by invoking either
Query.setParameter(parameterName, value)
or Query.setParameters(parameterMap)
as shown in the examples below.
QueryFactory queryFactory = Search.getQueryFactory(cache);
// Defining a query to search for various authors and publication years
Query<Book> query = queryFactory.create("SELECT title FROM org.infinispan.sample.Book WHERE author = :authorName AND publicationYear = :publicationYear").build();
// Set actual parameter values
query.setParameter("authorName", "Doe");
query.setParameter("publicationYear", 2010);
// Execute the query
List<Book> found = query.execute.list();
Alternatively, you can supply a map of actual parameter values to set multiple parameters at once:
Map<String, Object> parameterMap = new HashMap<>();
parameterMap.put("authorName", "Doe");
parameterMap.put("publicationYear", 2010);
query.setParameters(parameterMap);
A significant portion of the query parsing, validation and execution planning effort is performed during the first execution of a query with parameters. This effort is not repeated during subsequent executions leading to better performance compared to a similar query using constant values instead of query parameters. |
7.2.2. Ickle Query Language Parser Syntax
The Ickle query language is small subset of the JPQL query language, with some extensions for full-text.
The parser syntax has some notable rules:
-
Whitespace is not significant.
-
Wildcards are not supported in field names.
-
A field name or path must always be specified, as there is no default field.
-
&&
and||
are accepted instead ofAND
orOR
in both full-text and JPA predicates. -
!
may be used instead ofNOT
. -
A missing boolean operator is interpreted as
OR
. -
String terms must be enclosed with either single or double quotes.
-
Fuzziness and boosting are not accepted in arbitrary order; fuzziness always comes first.
-
!=
is accepted instead of<>
. -
Boosting cannot be applied to
>
,>=
,<
,⇐
operators. Ranges may be used to achieve the same result.
Filtering operators
Ickle support many filtering operators that can be used for both indexed and non-indexed fields.
Operator | Description | Example |
---|---|---|
in |
Checks that the left operand is equal to one of the elements from the Collection of values given as argument. |
FROM Book WHERE isbn IN ('ZZ', 'X1234') |
like |
Checks that the left argument (which is expected to be a String) matches a wildcard pattern that follows the JPA rules. |
FROM Book WHERE title LIKE '%Java%' |
= |
Checks that the left argument is an exact match of the given value |
FROM Book WHERE name = 'Programming Java' |
!= |
Checks that the left argument is different from the given value |
FROM Book WHERE language != 'English' |
> |
Checks that the left argument is greater than the given value. |
FROM Book WHERE price > 20 |
>= |
Checks that the left argument is greater than or equal to the given value. |
FROM Book WHERE price >= 20 |
< |
Checks that the left argument is less than the given value. |
FROM Book WHERE year < 2012 |
⇐ |
Checks that the left argument is less than or equal to the given value. |
FROM Book WHERE price ⇐ 50 |
between |
Checks that the left argument is between the given range limits. |
FROM Book WHERE price BETWEEN 50 AND 100 |
Boolean conditions
Combining multiple attribute conditions with logical conjunction (and
) and disjunction (or
) operators in order to
create more complex conditions is demonstrated in the following example. The well known operator precedence rule for
boolean operators applies here, so the order of the operators is irrelevant. Here and
operator still has higher priority than or
even though or
was invoked first.
# match all books that have "Data Grid" in their title
# or have an author named "Manik" and their description contains "clustering"
FROM org.infinispan.sample.Book WHERE title LIKE '%Data Grid%' OR author.name = 'Manik' AND description like '%clustering%'
Boolean negation has highest precedence among logical operators and applies only to the next simple attribute condition.
# match all books that do not have "Data Grid" in their title and are authored by "Manik"
FROM org.infinispan.sample.Book WHERE title != 'Data Grid' AND author.name = 'Manik'
Nested conditions
Changing the precedence of logical operators is achieved with parenthesis:
# match all books that have an author named "Manik" and their title contains
# "Data Grid" or their description contains "clustering"
FROM org.infinispan.sample.Book WHERE author.name = 'Manik' AND ( title like '%Data Grid%' OR description like '% clustering%')
Selecting attributes
In some use cases returning the whole domain object is overkill if only a small subset of the attributes are actually
used by the application, especially if the domain entity has embedded entities. The query language allows you to specify
a subset of attributes (or attribute paths) to return - the projection. If projections are used then the QueryResult.list()
will not return the whole domain entity but will return a List
of Object[]
, each slot in the array corresponding to
a projected attribute.
# match all books that have "Data Grid" in their title or description
# and return only their title and publication year
SELECT title, publicationYear FROM org.infinispan.sample.Book WHERE title like '%Data Grid%' OR description like '%Data Grid%'
Sorting
Ordering the results based on one or more attributes or attribute paths is done with the ORDER BY
clause. If multiple sorting criteria
are specified, then the order will dictate their precedence.
# match all books that have "Data Grid" in their title or description
# and return them sorted by the publication year and title
FROM org.infinispan.sample.Book WHERE title like '%Data Grid%' ORDER BY publicationYear DESC, title ASC
Grouping and Aggregation
Infinispan has the ability to group query results according to a set of grouping fields and construct aggregations of the results from each group by applying an aggregation function to the set of values that fall into each group. Grouping and aggregation can only be applied to projection queries (queries with one or more field in the SELECT clause).
The supported aggregations are: avg
, sum
, count
, max
, and min
.
The set of grouping fields is specified with the GROUP BY
clause and the order used for defining grouping fields is
not relevant. All fields selected in the projection must either be grouping fields
or else they must be aggregated using one of the grouping functions described below. A projection field can be
aggregated and used for grouping at the same time. A query that selects only grouping fields but no aggregation fields
is legal.
Example: Grouping Books by author and counting them.
SELECT author, COUNT(title) FROM org.infinispan.sample.Book WHERE title LIKE '%engine%' GROUP BY author
A projection query in which all selected fields have an aggregation function applied and no fields are used for grouping is allowed. In this case the aggregations will be computed globally as if there was a single global group. |
Aggregations
You can apply the following aggregation functions to a field:
Aggregation function | Description |
---|---|
|
Computes the average of a set of numbers. Accepted values are primitive numbers and instances of |
|
Counts the number of non-null rows and returns a |
|
Returns the greatest value found. Accepted values must be instances of |
|
Returns the smallest value found. Accepted values must be instances of |
|
Computes the sum of a set of Numbers. If there are no non-null values the result is |
Field Type | Return Type |
---|---|
Integral (other than BigInteger) |
Long |
Float or Double |
Double |
BigInteger |
BigInteger |
BigDecimal |
BigDecimal |
Evaluation of queries with grouping and aggregation
Aggregation queries can include filtering conditions, like usual queries. Filtering can be performed in two stages: before
and after the grouping operation. All filter conditions defined before invoking the groupBy()
method will be applied
before the grouping operation is performed, directly to the cache entries (not to the final projection). These filter
conditions can reference any fields of the queried entity type, and are meant to restrict the data set that is going to
be the input for the grouping stage. All filter conditions defined after invoking the groupBy()
method will be applied to
the projection that results from the projection and grouping operation. These filter conditions can either reference any
of the groupBy()
fields or aggregated fields. Referencing aggregated fields that are not specified in the select clause
is allowed; however, referencing non-aggregated and non-grouping fields is forbidden. Filtering in this phase will
reduce the amount of groups based on their properties. Sorting can also be specified similar to usual queries. The
ordering operation is performed after the grouping operation and can reference any of the groupBy()
fields or aggregated
fields.
7.2.3. Using Full-Text Search
Fuzzy Queries
To execute a fuzzy query add ~
along with an integer, representing the distance from the term used, after the term.
For instance
FROM sample_bank_account.Transaction WHERE description : 'cofee'~2
Range Queries
To execute a range query define the given boundaries within a pair of braces, as seen in the following example:
FROM sample_bank_account.Transaction WHERE amount : [20 to 50]
Phrase Queries
A group of words can be searched by surrounding them in quotation marks, as seen in the following example:
FROM sample_bank_account.Transaction WHERE description : 'bus fare'
Proximity Queries
To execute a proximity query, finding two terms within a specific distance, add a ~
along with the distance after the phrase.
For instance, the following example will find the words canceling and fee provided they are not more than 3 words apart:
FROM sample_bank_account.Transaction WHERE description : 'canceling fee'~3
Wildcard Queries
To search for "text" or "test", use the ?
single-character wildcard search:
FROM sample_bank_account.Transaction where description : 'te?t'
To search for "test", "tests", or "tester", use the *
multi-character wildcard search:
FROM sample_bank_account.Transaction where description : 'test*'
Regular Expression Queries
Regular expression queries can be performed by specifying a pattern between /
. Ickle uses Lucene’s regular expression syntax, so to search for the words moat
or boat
the following could be used:
FROM sample_library.Book where title : /[mb]oat/
Boosting Queries
Terms can be boosted by adding a ^
after the term to increase their relevance in a given query, the higher the boost factor the more relevant the term will be. For instance to search for titles containing beer and wine with a higher relevance on beer, by a factor of 3, the following could be used:
FROM sample_library.Book WHERE title : beer^3 OR wine
7.3. Embedded Queries
Use embedded queries when you add Infinispan as a library to custom applications.
Protobuf mapping is not required with embedded queries. Indexing and querying are both done on top of Java objects.
7.3.1. Embedded Query Example
We’re going to store Book
instances in an Infinispan cache called "books". Book
instances will be indexed, so we enable indexing for the cache:
Infinispan configuration:
<infinispan>
<cache-container>
<transport cluster="infinispan-cluster"/>
<distributed-cache name="books">
<indexing path="${user.home}/index">
<indexed-entities>
<indexed-entity>org.infinispan.sample.Book</indexed-entity>
</indexed-entities>
</indexing>
</distributed-cache>
</cache-container>
</infinispan>
Obtaining the cache:
import org.infinispan.Cache;
import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.manager.EmbeddedCacheManager;
EmbeddedCacheManager manager = new DefaultCacheManager("infinispan.xml");
Cache<String, Book> cache = manager.getCache("books");
Each Book
will be defined as in the following example; we have to choose which properties are indexed, and for each property we can optionally choose advanced indexing options using the annotations defined in the Hibernate Search project.
package org.infinispan.sample;
import java.time.LocalDate;
import java.util.HashSet;
import java.util.Set;
import org.hibernate.search.mapper.pojo.mapping.definition.annotation.*;
// Annotate values with @Indexed to add them to indexes
// Annotate each fields according to how you want to index it
@Indexed
public class Book {
@FullTextField
String title;
@FullTextField
String description;
@KeywordField
String isbn;
@GenericField
LocalDate publicationDate;
@IndexedEmbedded
Set<Author> authors = new HashSet<Author>();
}
package org.infinispan.sample;
import org.hibernate.search.mapper.pojo.mapping.definition.annotation.FullTextField;
public class Author {
@FullTextField
String name;
@FullTextField
String surname;
}
Now assuming we stored several Book
instances in our Infinispan Cache
, we can search them for any matching field as in the following example.
// Get the query factory from the cache
QueryFactory queryFactory = org.infinispan.query.Search.getQueryFactory(cache);
// Create an Ickle query that performs a full-text search using the ':' operator on the 'title' and 'authors.name' fields
// You can perform full-text search only on indexed caches
Query<Book> fullTextQuery = queryFactory.create("FROM org.infinispan.sample.Book b WHERE b.title:'infinispan' AND b.authors.name:'sanne'");
// Use the '=' operator to query fields in caches that are indexed or not
// Non full-text operators apply only to fields that are not analyzed
Query<Book> exactMatchQuery=queryFactory.create("FROM org.infinispan.sample.Book b WHERE b.isbn = '12345678' AND b.authors.name : 'sanne'");
// You can use full-text and non-full text operators in the same query
Query<Book> query=queryFactory.create("FROM org.infinispan.sample.Book b where b.authors.name : 'Stephen' and b.description : (+'dark' -'tower')");
// Get the results
List<Book> found=query.execute().list();
7.3.2. Mapping Entities
Infinispan relies on the API of Hibernate Search in order to define fine grained configuration for indexing at entity level. This configuration includes which fields are annotated, which analyzers should be used, how to map nested objects and so on. Detailed documentation is available at the Hibernate Search manual.
@DocumentId
Unlike Hibernate Search, using @DocumentId
to mark a field as identifier does not apply to Infinispan values; in Infinispan the identifier for all @Indexed
objects is the key used to store the value. You can still customize how the key is indexed using a combination of @Transformable
, custom types and custom FieldBridge
implementations.
@Transformable keys
The key for each value needs to be indexed as well, and the key instance must be transformed in a String
. Infinispan includes some default transformation routines to encode common primitives, but to use a custom key you must provide an implementation of org.infinispan.query.Transformer
.
You can annotate your key class with org.infinispan.query.Transformable
and your custom transformer implementation
will be picked up automatically:
@Transformable(transformer = CustomTransformer.class)
public class CustomKey {
...
}
public class CustomTransformer implements Transformer {
@Override
public Object fromString(String s) {
...
return new CustomKey(...);
}
@Override
public String toString(Object customType) {
CustomKey ck = (CustomKey) customType;
return ...
}
}
Use the key-transformers
xml element in both embedded and server config:
<replicated-cache name="test">
<indexing auto-config="true">
<key-transformers>
<key-transformer key="com.mycompany.CustomKey" transformer="com.mycompany.CustomTransformer"/>
</key-transformers>
</indexing>
</replicated-cache>
Alternatively, use the Java configuration API (embedded mode):
ConfigurationBuilder builder = ...
builder.indexing().enable()
.addKeyTransformer(CustomKey.class, CustomTransformer.class);
Programmatic mapping
Instead of using annotations to map an entity to the index, it’s also possible to configure it programmatically.
In the following example we map an object Author
which is to be stored in the grid and made searchable on two properties but without annotating the class.
import org.apache.lucene.search.Query;
import org.hibernate.search.cfg.Environment;
import org.hibernate.search.cfg.SearchMapping;
import org.hibernate.search.query.dsl.QueryBuilder;
import org.infinispan.Cache;
import org.infinispan.configuration.cache.Configuration;
import org.infinispan.configuration.cache.ConfigurationBuilder;
import org.infinispan.configuration.cache.Index;
import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.query.CacheQuery;
import org.infinispan.query.Search;
import org.infinispan.query.SearchManager;
import java.io.IOException;
import java.lang.annotation.ElementType;
import java.util.Properties;
SearchMapping mapping = new SearchMapping();
mapping.entity(Author.class).indexed()
.property("name", ElementType.METHOD).field()
.property("surname", ElementType.METHOD).field();
Properties properties = new Properties();
properties.put(Environment.MODEL_MAPPING, mapping);
properties.put("hibernate.search.[other options]", "[...]");
Configuration infinispanConfiguration = new ConfigurationBuilder()
.indexing().index(Index.NONE)
.withProperties(properties)
.build();
DefaultCacheManager cacheManager = new DefaultCacheManager(infinispanConfiguration);
Cache<Long, Author> cache = cacheManager.getCache();
SearchManager sm = Search.getSearchManager(cache);
Author author = new Author(1, "Manik", "Surtani");
cache.put(author.getId(), author);
QueryBuilder qb = sm.buildQueryBuilderForClass(Author.class).get();
Query q = qb.keyword().onField("name").matching("Manik").createQuery();
CacheQuery cq = sm.getQuery(q, Author.class);
assert cq.getResultSize() == 1;
7.4. Remote Queries
Use remote queries when you set up Infinispan Sever clusters that you access from clients.
To perform remote queries, data in the cache must use Google Protocol Buffers as an encoding for both over-the-wire transmission and storage.
Additionally, remote queries require Protobuf schemas (.proto
files) to define the data structure and indexing elements.
The benefit of using Protobuf with remote queries is that it is language neutral and works with Hot Rod Java clients as well as REST, C++, C#, and Node.js clients. |
7.4.1. Remote Query Example
An object called Book
will be stored in a Infinispan cache called "books". Book instances will be indexed, so we enable indexing for the cache:
<infinispan>
<cache-container default-cache="default">
<replicated-cache name="books">
<indexing>
<indexed-entities>
<indexed-entity>book_sample.Book</indexed-entity>
</indexed-entities>
</indexing>
</replicated-cache>
</cache-container>
</infinispan>
Alternatively, if the cache is not indexed, we configure the <encoding>
as application/x-protostream
to make sure the storage is queryable:
<infinispan>
<cache-container default-cache="default">
<replicated-cache name="books">
<encoding media-type="application/x-protostream"/>
</replicated-cache>
</cache-container>
</infinispan>
Each Book
will be defined as in the following example: we use @Protofield
annotations to identify the message fields and the @ProtoDoc
annotation on the fields to configure indexing attributes:
import org.infinispan.protostream.annotations.ProtoDoc;
import org.infinispan.protostream.annotations.ProtoFactory;
import org.infinispan.protostream.annotations.ProtoField;
@ProtoDoc("@Indexed")
public class Book {
@ProtoDoc("@Field(index=Index.YES, analyze = Analyze.YES, store = Store.NO)")
@ProtoField(number = 1)
final String title;
@ProtoDoc("@Field(index=Index.YES, analyze = Analyze.YES, store = Store.NO)")
@ProtoField(number = 2)
final String description;
@ProtoDoc("@Field(index=Index.YES, analyze = Analyze.YES, store = Store.NO)")
@ProtoField(number = 3, defaultValue = "0")
final int publicationYear;
@ProtoFactory
Book(String title, String description, int publicationYear) {
this.title = title;
this.description = description;
this.publicationYear = publicationYear;
}
// public Getter methods omitted for brevity
}
During compilation, the annotations in the preceding example generate the artifacts necessary to read, write and query Book
instances. To enable this generation, use the @AutoProtoSchemaBuilder
annotation in a newly created class with empty constructor or interface:
import org.infinispan.protostream.SerializationContextInitializer;
import org.infinispan.protostream.annotations.AutoProtoSchemaBuilder;
@AutoProtoSchemaBuilder(
includeClasses = {
Book.class
},
schemaFileName = "book.proto",
schemaFilePath = "proto/",
schemaPackageName = "book_sample")
public interface RemoteQueryInitializer extends SerializationContextInitializer {
}
After compilation, a file book.proto
file will be created in the configured schemaFilePath
, along with an implementation RemoteQueryInitializerImpl.java
of the annotated interface.
This concrete class can be used directly in the Hot Rod client code to initialize the serialization context.
Putting all together:
package org.infinispan;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import org.infinispan.client.hotrod.RemoteCache;
import org.infinispan.client.hotrod.RemoteCacheManager;
import org.infinispan.client.hotrod.Search;
import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.query.dsl.Query;
import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.remote.client.ProtobufMetadataManagerConstants;
public class RemoteQuery {
public static void main(String[] args) throws Exception {
ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
// RemoteQueryInitializerImpl is generated
clientBuilder.addServer().host("127.0.0.1").port(11222)
.security().authentication().username("user").password("user")
.addContextInitializers(new RemoteQueryInitializerImpl());
RemoteCacheManager remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
// Grab the generated protobuf schema and registers in the server.
Path proto = Paths.get(RemoteQuery.class.getClassLoader()
.getResource("proto/book.proto").toURI());
String protoBufCacheName = ProtobufMetadataManagerConstants.PROTOBUF_METADATA_CACHE_NAME;
remoteCacheManager.getCache(protoBufCacheName).put("book.proto", Files.readString(proto));
// Obtain the 'books' remote cache
RemoteCache<Object, Object> remoteCache = remoteCacheManager.getCache("books");
// Add some Books
Book book1 = new Book("Infinispan in Action", "Learn Infinispan with using it", 2015);
Book book2 = new Book("Cloud-Native Applications with Java and Quarkus", "Build robust and reliable cloud applications", 2019);
remoteCache.put(1, book1);
remoteCache.put(2, book2);
// Execute a full-text query
QueryFactory queryFactory = Search.getQueryFactory(remoteCache);
Query<Book> query = queryFactory.create("FROM book_sample.Book WHERE title:'java'");
List<Book> list = query.execute().list(); // Voila! We have our book back from the cache!
}
}
7.4.2. Registering Protobuf Schemas
To query protobuf entities, you must provide the client and server with the relevant metadata about your entities in a Protobuf schema (.proto
file).
The descriptors are stored in a dedicated ___protobuf_metadata
cache on the server.
Both keys and values in this cache are plain strings.
Registering a new schema is therefore as simple as performing a put()
operation on this cache using the schema name as key and the schema file itself as the value.
Alternatively you can use the schema
command with the Infinispan CLI, Infinispan Console, REST endpoint /rest/v2/schemas
, or the ProtobufMetadataManager
MBean via JMX.
Note that, if you enable authorization on caches, users must belong to the ['_schema_manager'] role to add to the _protobuf_metadata cache.
Even if indexing is enabled for a cache no fields of Protobuf encoded entries will be indexed unless you use the |
7.4.3. Analysis
Analysis is a process that converts input data into one or more terms that you can index and query. While in Embedded Query mapping is done through Hibernate Search annotations, that supports a rich set of Lucene based analyzers, in client-server mode the analyzer definitions are declared in a platform neutral way.
Default Analyzers
Infinispan provides a set of default analyzers for remote query as follows:
Definition | Description |
---|---|
|
Splits text fields into tokens, treating whitespace and punctuation as delimiters. |
|
Tokenizes input streams by delimiting at non-letters and then converting all letters to lowercase characters. Whitespace and non-letters are discarded. |
|
Splits text streams on whitespace and returns sequences of non-whitespace characters as tokens. |
|
Treats entire text fields as single tokens. |
|
Stems English words using the Snowball Porter filter. |
|
Generates n-gram tokens that are 3 grams in size by default. |
|
Splits text fields into larger size tokens than the |
These analyzer definitions are based on Apache Lucene and are provided "as-is". For more information about tokenizers, filters, and CharFilters, see the appropriate Lucene documentation.
Using Analyzer Definitions
To use analyzer definitions, reference them by name in the .proto
schema file.
-
Include the
Analyze.YES
attribute to indicate that the property is analyzed. -
Specify the analyzer definition with the
@Analyzer
annotation.
The following example shows referenced analyzer definitions:
/* @Indexed */
message TestEntity {
/* @Field(store = Store.YES, analyze = Analyze.YES, analyzer = @Analyzer(definition = "keyword")) */
optional string id = 1;
/* @Field(store = Store.YES, analyze = Analyze.YES, analyzer = @Analyzer(definition = "simple")) */
optional string name = 2;
}
If using Java classes annotated with @ProtoField
, the declaration is similar:
@ProtoDoc("@Field(store = Store.YES, analyze = Analyze.YES, analyzer = @Analyzer(definition = \"keyword\"))")
@ProtoField(number = 1)
final String id;
@ProtoDoc("@Field(store = Store.YES, analyze = Analyze.YES, analyzer = @Analyzer(definition = \"simple\"))")
@ProtoField(number = 2)
final String description;
Creating Custom Analyzer Definitions
If you require custom analyzer definitions, do the following:
-
Create an implementation of the
ProgrammaticSearchMappingProvider
interface packaged in aJAR
file. -
Provide a file named
org.infinispan.query.spi.ProgrammaticSearchMappingProvider
in theMETA-INF/services/
directory of yourJAR
. This file should contain the fully qualified class name of your implementation. -
Copy the
JAR
to thelib/
directory of your Infinispan Server installation.Your JAR must be available to Infinispan Server during startup. You cannot add it to an already running server.
The following is an example implementation of the ProgrammaticSearchMappingProvider
interface:
import org.apache.lucene.analysis.core.LowerCaseFilterFactory;
import org.apache.lucene.analysis.core.StopFilterFactory;
import org.apache.lucene.analysis.standard.StandardFilterFactory;
import org.apache.lucene.analysis.standard.StandardTokenizerFactory;
import org.hibernate.search.cfg.SearchMapping;
import org.infinispan.Cache;
import org.infinispan.query.spi.ProgrammaticSearchMappingProvider;
public final class MyAnalyzerProvider implements ProgrammaticSearchMappingProvider {
@Override
public void defineMappings(Cache cache, SearchMapping searchMapping) {
searchMapping
.analyzerDef("standard-with-stop", StandardTokenizerFactory.class)
.filter(StandardFilterFactory.class)
.filter(LowerCaseFilterFactory.class)
.filter(StopFilterFactory.class);
}
}
7.5. Continuous Queries
Continuous Queries allow an application to register a listener which will receive the entries that currently match a query filter, and will be continuously notified of any changes to the queried data set that result from further cache operations. This includes incoming matches, for values that have joined the set, updated matches, for matching values that were modified and continue to match, and outgoing matches, for values that have left the set. By using a Continuous Query the application receives a steady stream of events instead of having to repeatedly execute the same query to discover changes, resulting in a more efficient use of resources. For instance, all of the following use cases could utilize Continuous Queries:
-
Return all persons with an age between 18 and 25 (assuming the Person entity has an
age
property and is updated by the user application). -
Return all transactions higher than $2000.
-
Return all times where the lap speed of F1 racers were less than 1:45.00s (assuming the cache contains Lap entries and that laps are entered live during the race).
7.5.1. Continuous Query Execution
A continuous query uses a listener that is notified when:
-
An entry starts matching the specified query, represented by a
Join
event. -
A matching entry is updated and continues to match the query, represented by an
Update
vent. -
An entry stops matching the query, represented by a
Leave
event.
When a client registers a continuous query listener it immediately begins to receive the results currently matching the
query, received as Join
events as described above. In addition, it will receive subsequent notifications when other
entries begin matching the query, as Join
events, or stop matching the query, as Leave
events, as a consequence of
any cache operations that would normally generate creation, modification, removal, or expiration events. Updated cache
entries will generate Update
events if the entry matches the query filter before and after the operation. To
summarize, the logic used to determine if the listener receives a Join
, Update
or Leave
event is:
-
If the query on both the old and new values evaluate false, then the event is suppressed.
-
If the query on the old value evaluates false and on the new value evaluates true, then a
Join
event is sent. -
If the query on both the old and new values evaluate true, then an
Update
event is sent. -
If the query on the old value evaluates true and on the new value evaluates false, then a
Leave
event is sent. -
If the query on the old value evaluates true and the entry is removed or expired, then a
Leave
event is sent.
Continuous Queries can use all query capabilities except: grouping, aggregation, and sorting operations. |
7.5.2. Creating Continuous Queries
To create a continuous query, do the following:
-
Create a Query object.
-
Obtain the ContinuousQuery (
org.infinispan.query.api.continuous.ContinuousQuery
object of your cache by calling the appropriate method:-
org.infinispan.client.hotrod.Search.getContinuousQuery(RemoteCache<K, V> cache)
for remote mode -
org.infinispan.query.Search.getContinuousQuery(Cache<K, V> cache)
for embedded mode
-
-
Register the query and a continuous query listener (
org.infinispan.query.api.continuous.ContinuousQueryListener
) as follows:
continuousQuery.addContinuousQueryListener(query, listener);
The following example demonstrates a simple continuous query use case in embedded mode:
import org.infinispan.query.api.continuous.ContinuousQuery;
import org.infinispan.query.api.continuous.ContinuousQueryListener;
import org.infinispan.query.Search;
import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.dsl.Query;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
[...]
// We have a cache of Persons
Cache<Integer, Person> cache = ...
// We begin by creating a ContinuousQuery instance on the cache
ContinuousQuery<Integer, Person> continuousQuery = Search.getContinuousQuery(cache);
// Define our query. In this case we will be looking for any Person instances under 21 years of age.
QueryFactory queryFactory = Search.getQueryFactory(cache);
Query query = queryFactory.create("FROM Person p WHERE p.age < 21");
final Map<Integer, Person> matches = new ConcurrentHashMap<Integer, Person>();
// Define the ContinuousQueryListener
ContinuousQueryListener<Integer, Person> listener = new ContinuousQueryListener<Integer, Person>() {
@Override
public void resultJoining(Integer key, Person value) {
matches.put(key, value);
}
@Override
public void resultUpdated(Integer key, Person value) {
// we do not process this event
}
@Override
public void resultLeaving(Integer key) {
matches.remove(key);
}
};
// Add the listener and the query
continuousQuery.addContinuousQueryListener(query, listener);
[...]
// Remove the listener to stop receiving notifications
continuousQuery.removeContinuousQueryListener(listener);
As Person instances having an age less than 21 are added to the cache they will be received by the listener and will be
placed into the matches
map, and when these entries are removed from the cache or their age is modified to be greater
or equal than 21 they will be removed from matches
.
7.5.3. Removing Continuous Queries
To stop the query from further execution just remove the listener:
continuousQuery.removeContinuousQueryListener(listener);
7.5.4. Continuous Query Performance
Continuous queries are designed to provide a constant stream of updates to the application, potentially resulting in a
very large number of events being generated for particularly broad queries. A new temporary memory allocation is made
for each event. This behavior may result in memory pressure, potentially leading to OutOfMemoryErrors
(especially in
remote mode) if queries are not carefully designed. To prevent such issues it is strongly recommended to ensure that
each query captures the minimal information needed both in terms of number of matched entries and size of each match
(projections can be used to capture the interesting properties), and that each ContinuousQueryListener
is designed
to quickly process all received events without blocking and to avoid performing actions that will lead to the generation
of new matching events from the cache it listens to.
7.6. Query Statistics
Infinispan exposes indexing and querying statistics through the Search
entry point, which you can use programmatically as follows:
// Statistics for the local cluster member
SearchStatistics statistics = Search.getSearchStatistics(cache);
// Consolidated statistics for the whole cluster
CompletionStage<SearchStatisticsSnapshot> statistics = Search.getClusteredSearchStatistics(cache)
Infinispan Server also exposes index and query statistics through the REST endpoint.
Use the following invocation: GET /v2/caches/{cacheName}/search/stats
7.7. Query Performance Tuning
Infinispan exposes statistics for queries and provides configurable attributes so you can monitor and tune queries for optimal performance.
Indexing caches improves query performance. However, in some cases, queries might only partially use an index such as when not all fields in the schema are annotated.
Start tuning query performance by checking the time it takes for each type of query to run. If your queries seem to be slow, you should make sure that queries are using the indexes for caches and that all entities and field mappings are indexed.
Indexing can degrade write throughput for Infinispan clusters.
The commit-interval
attribute defines the interval, in milliseconds, between which index changes that are buffered in memory are flushed to the index storage and a commit is performed.
This operation is costly so you should avoid configuring an interval that is too small. The default is 1000 ms (1 second).
The refresh-interval
attribute defines the interval, in milliseconds, between which the index reader is refreshed.
The default value is 0
, which returns data in queries as soon as it is written to a cache.
A value greater than 0
results in some stale query results but substantially increases throughput, especially in write-heavy scenarios.
If you do not need data returned in queries as soon as it is written, you should adjust the refresh interval to improve query performance.
8. Clustered Counters
Clustered counters are counters which are distributed and shared among all nodes in the Infinispan cluster. Counters can have different consistency levels: strong and weak.
Although a strong/weak consistent counter has separate interfaces, both support updating its value, return the current value and they provide events when its value is updated. Details are provided below in this document to help you choose which one fits best your uses-case.
8.1. Installation and Configuration
In order to start using the counters, you needs to add the dependency in your Maven pom.xml
file:
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-clustered-counter</artifactId>
</dependency>
The counters can be configured Infinispan configuration file or on-demand via the CounterManager
interface detailed
later in this document.
A counters configured in Infinispan configuration file is created at boot time when the EmbeddedCacheManager
is starting.
Theses counters are started eagerly and they are available in all the cluster’s nodes.
<?xml version="1.0" encoding="UTF-8"?>
<infinispan>
<cache-container ...>
<!-- if needed to persist counter, global state needs to be configured -->
<global-state>
...
</global-state>
<!-- your caches configuration goes here -->
<counters xmlns="urn:infinispan:config:counters:12.0" num-owners="3" reliability="CONSISTENT">
<strong-counter name="c1" initial-value="1" storage="PERSISTENT"/>
<strong-counter name="c2" initial-value="2" storage="VOLATILE">
<lower-bound value="0"/>
</strong-counter>
<strong-counter name="c3" initial-value="3" storage="PERSISTENT">
<upper-bound value="5"/>
</strong-counter>
<strong-counter name="c4" initial-value="4" storage="VOLATILE">
<lower-bound value="0"/>
<upper-bound value="10"/>
</strong-counter>
<weak-counter name="c5" initial-value="5" storage="PERSISTENT" concurrency-level="1"/>
</counters>
</cache-container>
</infinispan>
or programmatically, in the GlobalConfigurationBuilder
:
GlobalConfigurationBuilder globalConfigurationBuilder = ...;
CounterManagerConfigurationBuilder builder = globalConfigurationBuilder.addModule(CounterManagerConfigurationBuilder.class);
builder.numOwner(3).reliability(Reliability.CONSISTENT);
builder.addStrongCounter().name("c1").initialValue(1).storage(Storage.PERSISTENT);
builder.addStrongCounter().name("c2").initialValue(2).lowerBound(0).storage(Storage.VOLATILE);
builder.addStrongCounter().name("c3").initialValue(3).upperBound(5).storage(Storage.PERSISTENT);
builder.addStrongCounter().name("c4").initialValue(4).lowerBound(0).upperBound(10).storage(Storage.VOLATILE);
builder.addWeakCounter().name("c5").initialValue(5).concurrencyLevel(1).storage(Storage.PERSISTENT);
On other hand, the counters can be configured on-demand, at any time after the EmbeddedCacheManager
is initialized.
CounterManager manager = ...;
manager.defineCounter("c1", CounterConfiguration.builder(CounterType.UNBOUNDED_STRONG).initialValue(1).storage(Storage.PERSISTENT).build());
manager.defineCounter("c2", CounterConfiguration.builder(CounterType.BOUNDED_STRONG).initialValue(2).lowerBound(0).storage(Storage.VOLATILE).build());
manager.defineCounter("c3", CounterConfiguration.builder(CounterType.BOUNDED_STRONG).initialValue(3).upperBound(5).storage(Storage.PERSISTENT).build());
manager.defineCounter("c4", CounterConfiguration.builder(CounterType.BOUNDED_STRONG).initialValue(4).lowerBound(0).upperBound(10).storage(Storage.VOLATILE).build());
manager.defineCounter("c2", CounterConfiguration.builder(CounterType.WEAK).initialValue(5).concurrencyLevel(1).storage(Storage.PERSISTENT).build());
CounterConfiguration is immutable and can be reused.
|
The method defineCounter()
will return true
if the counter is successful configured or false
otherwise.
However, if the configuration is invalid, the method will throw a CounterConfigurationException
.
To find out if a counter is already defined, use the method isDefined()
.
CounterManager manager = ...
if (!manager.isDefined("someCounter")) {
manager.define("someCounter", ...);
}
Per cluster attributes:
-
num-owners
: Sets the number of counter’s copies to keep cluster-wide. A smaller number will make update operations faster but will support a lower number of server crashes. It must be positive and its default value is2
. -
reliability
: Sets the counter’s update behavior in a network partition. Default value isAVAILABLE
and valid values are:-
AVAILABLE
: all partitions are able to read and update the counter’s value. -
CONSISTENT
: only the primary partition (majority of nodes) will be able to read and update the counter’s value. The remaining partitions can only read its value.
-
Per counter attributes:
-
initial-value
[common]: Sets the counter’s initial value. Default is0
(zero). -
storage
[common]: Sets the counter’s behavior when the cluster is shutdown and restarted. Default value isVOLATILE
and valid values are:-
VOLATILE
: the counter’s value is only available in memory. The value will be lost when a cluster is shutdown. -
PERSISTENT
: the counter’s value is stored in a private and local persistent store. The value is kept when the cluster is shutdown and restored after a restart.
-
On-demand and VOLATILE counters will lose its value and configuration after a cluster shutdown.
They must be defined again after the restart.
|
-
lower-bound
[strong]: Sets the strong consistent counter’s lower bound. Default value isLong.MIN_VALUE
. -
upper-bound
[strong]: Sets the strong consistent counter’s upper bound. Default value isLong.MAX_VALUE
.
If neither the lower-bound or upper-bound are configured, the strong counter is set as unbounded.
|
The initial-value must be between lower-bound and upper-bound inclusive.
|
-
concurrency-level
[weak]: Sets the number of concurrent updates. Its value must be positive and the default value is16
.
8.2. CounterManager
interface
The CounterManager
interface is the entry point to define, retrieve and remove counters.
CounterManager
automatically listen to the creation of EmbeddedCacheManager
and proceeds with the registration of an
instance of it per EmbeddedCacheManager
.
It starts the caches needed to store the counter state and configures the default counters.
Retrieving the CounterManager
is as simple as invoke the
EmbeddedCounterManagerFactory.asCounterManager(EmbeddedCacheManager)
as shown in the example below:
// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager manager = ...;
// retrieve the CounterManager
CounterManager counterManager = EmbeddedCounterManagerFactory.asCounterManager(manager);
For Hot Rod clients, the CounterManager
is registered in the RemoteCacheManager and can be retrieved as follows:
// create or obtain your RemoteCacheManager
RemoteCacheManager manager = ...;
// retrieve the CounterManager
CounterManager counterManager = RemoteCounterManagerFactory.asCounterManager(manager);
8.2.1. Remove a counter via CounterManager
There is a difference between remove a counter via the Strong/WeakCounter
interfaces and the CounterManager
.
The CounterManager.remove(String)
removes the counter value from the cluster and removes all the listeners registered
in the counter in the local counter instance.
In addition, the counter instance is no longer reusable and it may return an invalid results.
On the other side, the Strong/WeakCounter
removal only removes the counter value.
The instance can still be reused and the listeners still works.
The counter is re-created if it is accessed after a removal. |
8.3. The Counter
A counter can be strong (StrongCounter
) or weakly consistent (WeakCounter
) and both is identified by a name.
They have a specific interface but they share some logic, namely, both of them are asynchronous
( a CompletableFuture
is returned by each operation), provide an update event and can be reset to its initial value.
If you don’t want to use the async API, it is possible to return a synchronous counter via sync()
method.
The API is the same but without the CompletableFuture
return value.
The following methods are common to both interfaces:
String getName();
CompletableFuture<Long> getValue();
CompletableFuture<Void> reset();
<T extends CounterListener> Handle<T> addListener(T listener);
CounterConfiguration getConfiguration();
CompletableFuture<Void> remove();
SyncStrongCounter sync(); //SyncWeakCounter for WeakCounter
-
getName()
returns the counter name (identifier). -
getValue()
returns the current counter’s value. -
reset()
allows to reset the counter’s value to its initial value. -
addListener()
register a listener to receive update events. More details about it in the Notification and Events section. -
getConfiguration()
returns the configuration used by the counter. -
remove()
removes the counter value from the cluster. The instance can still be used and the listeners are kept. -
sync()
creates a synchronous counter.
The counter is re-created if it is accessed after a removal. |
8.3.1. The StrongCounter
interface: when the consistency or bounds matters.
The strong counter provides uses a single key stored in Infinispan cache to provide the consistency needed. All the updates are performed under the key lock to updates its values. On other hand, the reads don’t acquire any locks and reads the current value. Also, with this scheme, it allows to bound the counter value and provide atomic operations like compare-and-set/swap.
A StrongCounter
can be retrieved from the CounterManager
by using the getStrongCounter()
method.
As an example:
CounterManager counterManager = ...
StrongCounter aCounter = counterManager.getStrongCounter("my-counter");
Since every operation will hit a single key, the StrongCounter has a higher contention rate.
|
The StrongCounter
interface adds the following method:
default CompletableFuture<Long> incrementAndGet() {
return addAndGet(1L);
}
default CompletableFuture<Long> decrementAndGet() {
return addAndGet(-1L);
}
CompletableFuture<Long> addAndGet(long delta);
CompletableFuture<Boolean> compareAndSet(long expect, long update);
CompletableFuture<Long> compareAndSwap(long expect, long update);
-
incrementAndGet()
increments the counter by one and returns the new value. -
decrementAndGet()
decrements the counter by one and returns the new value. -
addAndGet()
adds a delta to the counter’s value and returns the new value. -
compareAndSet()
andcompareAndSwap()
atomically set the counter’s value if the current value is the expected.
A operation is considered completed when the CompletableFuture is completed.
|
The difference between compare-and-set and compare-and-swap is that the former returns true if the operation succeeds while the later returns the previous value. The compare-and-swap is successful if the return value is the same as the expected. |
Bounded StrongCounter
When bounded, all the update method above will throw a CounterOutOfBoundsException
when they reached the
lower or upper bound.
The exception has the following methods to check which side bound has been reached:
public boolean isUpperBoundReached();
public boolean isLowerBoundReached();
Uses cases
The strong counter fits better in the following uses cases:
-
When counter’s value is needed after each update (example, cluster-wise ids generator or sequences)
-
When a bounded counter is needed (example, rate limiter)
Usage Examples
StrongCounter counter = counterManager.getStrongCounter("unbounded_counter");
// incrementing the counter
System.out.println("new value is " + counter.incrementAndGet().get());
// decrement the counter's value by 100 using the functional API
counter.addAndGet(-100).thenApply(v -> {
System.out.println("new value is " + v);
return null;
}).get();
// alternative, you can do some work while the counter is updated
CompletableFuture<Long> f = counter.addAndGet(10);
// ... do some work ...
System.out.println("new value is " + f.get());
// and then, check the current value
System.out.println("current value is " + counter.getValue().get());
// finally, reset to initial value
counter.reset().get();
System.out.println("current value is " + counter.getValue().get());
// or set to a new value if zero
System.out.println("compare and set succeeded? " + counter.compareAndSet(0, 1));
And below, there is another example using a bounded counter:
StrongCounter counter = counterManager.getStrongCounter("bounded_counter");
// incrementing the counter
try {
System.out.println("new value is " + counter.addAndGet(100).get());
} catch (ExecutionException e) {
Throwable cause = e.getCause();
if (cause instanceof CounterOutOfBoundsException) {
if (((CounterOutOfBoundsException) cause).isUpperBoundReached()) {
System.out.println("ops, upper bound reached.");
} else if (((CounterOutOfBoundsException) cause).isLowerBoundReached()) {
System.out.println("ops, lower bound reached.");
}
}
}
// now using the functional API
counter.addAndGet(-100).handle((v, throwable) -> {
if (throwable != null) {
Throwable cause = throwable.getCause();
if (cause instanceof CounterOutOfBoundsException) {
if (((CounterOutOfBoundsException) cause).isUpperBoundReached()) {
System.out.println("ops, upper bound reached.");
} else if (((CounterOutOfBoundsException) cause).isLowerBoundReached()) {
System.out.println("ops, lower bound reached.");
}
}
return null;
}
System.out.println("new value is " + v);
return null;
}).get();
Compare-and-set vs Compare-and-swap examples:
StrongCounter counter = counterManager.getStrongCounter("my-counter");
long oldValue, newValue;
do {
oldValue = counter.getValue().get();
newValue = someLogic(oldValue);
} while (!counter.compareAndSet(oldValue, newValue).get());
With compare-and-swap, it saves one invocation counter invocation (counter.getValue()
)
StrongCounter counter = counterManager.getStrongCounter("my-counter");
long oldValue = counter.getValue().get();
long currentValue, newValue;
do {
currentValue = oldValue;
newValue = someLogic(oldValue);
} while ((oldValue = counter.compareAndSwap(oldValue, newValue).get()) != currentValue);
8.3.2. The WeakCounter
interface: when speed is needed
The WeakCounter
stores the counter’s value in multiple keys in Infinispan cache.
The number of keys created is configured by the concurrency-level
attribute.
Each key stores a partial state of the counter’s value and it can be updated concurrently.
It main advantage over the StrongCounter
is the lower contention in the cache.
On other hand, the read of its value is more expensive and bounds are not allowed.
The reset operation should be handled with caution. It is not atomic and it produces intermediates values. These value may be seen by a read operation and by any listener registered. |
A WeakCounter
can be retrieved from the CounterManager
by using the getWeakCounter()
method.
As an example:
CounterManager counterManager = ...
StrongCounter aCounter = counterManager.getWeakCounter("my-counter);
Weak Counter Interface
The WeakCounter
adds the following methods:
default CompletableFuture<Void> increment() {
return add(1L);
}
default CompletableFuture<Void> decrement() {
return add(-1L);
}
CompletableFuture<Void> add(long delta);
They are similar to the `StrongCounter’s methods but they don’t return the new value.
Uses cases
The weak counter fits best in uses cases where the result of the update operation is not needed or the counter’s value is not required too often. Collecting statistics is a good example of such an use case.
Examples
Below, there is an example of the weak counter usage.
WeakCounter counter = counterManager.getWeakCounter("my_counter");
// increment the counter and check its result
counter.increment().get();
System.out.println("current value is " + counter.getValue());
CompletableFuture<Void> f = counter.add(-100);
//do some work
f.get(); //wait until finished
System.out.println("current value is " + counter.getValue().get());
//using the functional API
counter.reset().whenComplete((aVoid, throwable) -> System.out.println("Reset done " + (throwable == null ? "successfully" : "unsuccessfully"))).get();
System.out.println("current value is " + counter.getValue().get());
8.4. Notifications and Events
Both strong and weak counter supports a listener to receive its updates events.
The listener must implement CounterListener
and it can be registered by the following method:
<T extends CounterListener> Handle<T> addListener(T listener);
The CounterListener
has the following interface:
public interface CounterListener {
void onUpdate(CounterEvent entry);
}
The Handle
object returned has the main goal to remove the CounterListener
when it is not longer needed.
Also, it allows to have access to the CounterListener
instance that is it handling.
It has the following interface:
public interface Handle<T extends CounterListener> {
T getCounterListener();
void remove();
}
Finally, the CounterEvent
has the previous and current value and state.
It has the following interface:
public interface CounterEvent {
long getOldValue();
State getOldState();
long getNewValue();
State getNewState();
}
The state is always State.VALID for unbounded strong counter and weak counter.
State.LOWER_BOUND_REACHED and State.UPPER_BOUND_REACHED are only valid for bounded strong counters.
|
The weak counter reset() operation will trigger multiple notification with intermediate values.
|
9. Locking and Concurrency
Infinispan makes use of multi-versioned concurrency control (MVCC) - a concurrency scheme popular with relational databases and other data stores. MVCC offers many advantages over coarse-grained Java synchronization and even JDK Locks for access to shared data, including:
-
allowing concurrent readers and writers
-
readers and writers do not block one another
-
write skews can be detected and handled
-
internal locks can be striped
9.1. Locking implementation details
Infinispan’s MVCC implementation makes use of minimal locks and synchronizations, leaning heavily towards lock-free techniques such as compare-and-swap and lock-free data structures wherever possible, which helps optimize for multi-CPU and multi-core environments.
In particular, Infinispan’s MVCC implementation is heavily optimized for readers. Reader threads do not acquire explicit locks for entries, and instead directly read the entry in question.
Writers, on the other hand, need to acquire a write lock. This ensures only one concurrent writer per entry, causing concurrent writers to queue up to change an entry.
To allow concurrent reads, writers make a copy of the entry they intend to modify, by wrapping the entry in an MVCCEntry
.
This copy isolates concurrent readers from seeing partially modified state.
Once a write has completed, MVCCEntry.commit()
will flush changes to the data container and subsequent readers will see the changes written.
9.1.1. How does it work in clustered caches?
In clustered caches, each key has a node responsible to lock the key. This node is called primary owner.
Non Transactional caches
-
The write operation is sent to the primary owner of the key.
-
The primary owner tries to lock the key.
-
If it succeeds, it forwards the operation to the other owners;
-
Otherwise, an exception is thrown.
-
If the operation is conditional and it fails on the primary owner, it is not forwarded to the other owners. |
If the operation is executed locally in the primary owner, the first step is skipped. |
9.1.2. Transactional caches
The transactional cache supports optimistic and pessimistic locking mode. Refer to Transaction Locking for more information.
9.1.3. Isolation levels
Isolation level affects what transactions can read when running concurrently with other transaction. Refer to Isolation Levels for more information.
9.1.4. The LockManager
The LockManager
is a component that is responsible for locking an entry for writing.
The LockManager
makes use of a LockContainer
to locate/hold/create locks.
LockContainers
come in two broad flavours, with support for lock striping and with support for one lock per entry.
9.1.5. Lock striping
Lock striping entails the use of a fixed-size, shared collection of locks for the entire cache, with locks being allocated to entries based on the entry’s key’s hash code.
Similar to the way the JDK’s ConcurrentHashMap
allocates locks, this allows for a highly scalable, fixed-overhead locking mechanism in exchange for potentially unrelated entries being blocked by the same lock.
The alternative is to disable lock striping - which would mean a new lock is created per entry. This approach may give you greater concurrent throughput, but it will be at the cost of additional memory usage, garbage collection churn, etc.
Default lock striping settings
lock striping is disabled by default, due to potential deadlocks that can happen if locks for different keys end up in the same lock stripe.
|
The size of the shared lock collection used by lock striping can be tuned using the concurrencyLevel
attribute of the <locking />
configuration element.
Configuration example:
<locking striping="false|true"/>
Or
new ConfigurationBuilder().locking().useLockStriping(false|true);
9.1.6. Concurrency levels
In addition to determining the size of the striped lock container, this concurrency level is also used to tune any JDK ConcurrentHashMap
based collections where related, such as internal to DataContainer
s.
Please refer to the JDK ConcurrentHashMap
Javadocs for a detailed discussion of concurrency levels, as this parameter is used in exactly the same way in Infinispan.
Configuration example:
<locking concurrency-level="32"/>
Or
new ConfigurationBuilder().locking().concurrencyLevel(32);
9.1.7. Lock timeout
The lock timeout specifies the amount of time, in milliseconds, to wait for a contented lock.
Configuration example:
<locking acquire-timeout="10000"/>
Or
new ConfigurationBuilder().locking().lockAcquisitionTimeout(10000);
//alternatively
new ConfigurationBuilder().locking().lockAcquisitionTimeout(10, TimeUnit.SECONDS);
9.1.8. Consistency
The fact that a single owner is locked (as opposed to all owners being locked) does not break the following consistency guarantee:
if key K
is hashed to nodes {A, B}
and transaction TX1
acquires a lock for K
, let’s say on A
.
If another transaction, TX2
, is started on B
(or any other node) and TX2
tries to lock K
then it will fail with a timeout as the lock is already held by TX1
.
The reason for this is the that the lock for a key K
is always, deterministically, acquired on the same node of the cluster, regardless of where the transaction originates.
9.2. Data Versioning
Infinispan supports two forms of data versioning: simple and external. The simple versioning is used in transactional caches for write skew check.
The external versioning is used to encapsulate an external source of data versioning within Infinispan, such as when using Infinispan with Hibernate which in turn gets its data version information directly from a database.
In this scheme, a mechanism to pass in the version becomes necessary, and overloaded versions of put()
and putForExternalRead()
will be provided in AdvancedCache
to take in an external data version.
This is then stored on the InvocationContext
and applied to the entry at commit time.
Write skew checks cannot and will not be performed in the case of external data versioning. |
10. Using the Infinispan CDI Extension
Infinispan provides an extension that integrates with the CDI (Contexts and Dependency Injection) programming model and allows you to:
-
Configure and inject caches into CDI Beans and Java EE components.
-
Configure cache managers.
-
Receive cache and cache manager level events.
-
Control data storage and retrieval using JCache annotations.
10.1. CDI Dependencies
Update your pom.xml
with one of the following dependencies to include the
Infinispan CDI extension in your project:
<dependency> <groupId>org.infinispan</groupId> <artifactId>infinispan-cdi-embedded</artifactId> </dependency>
<dependency> <groupId>org.infinispan</groupId> <artifactId>infinispan-cdi-remote</artifactId> </dependency>
10.2. Injecting Embedded Caches
Set up CDI beans to inject embedded caches.
-
Create a cache qualifier annotation.
... import javax.inject.Qualifier; @Qualifier @Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD}) @Retention(RetentionPolicy.RUNTIME) @Documented public @interface GreetingCache { (1) }
1 creates a @GreetingCache
qualifier. -
Add a producer method that defines the cache configuration.
... import org.infinispan.configuration.cache.Configuration; import org.infinispan.configuration.cache.ConfigurationBuilder; import org.infinispan.cdi.ConfigureCache; import javax.enterprise.inject.Produces; public class Config { @ConfigureCache("mygreetingcache") (1) @GreetingCache (2) @Produces public Configuration greetingCacheConfiguration() { return new ConfigurationBuilder() .memory() .size(1000) .build(); } }
1 names the cache to inject. 2 adds the cache qualifier. -
Add a producer method that creates a clustered cache manager, if required
... package org.infinispan.configuration.global.GlobalConfigurationBuilder; public class Config { @GreetingCache (1) @Produces @ApplicationScoped (2) public EmbeddedCacheManager defaultClusteredCacheManager() { (3) return new DefaultCacheManager( new GlobalConfigurationBuilder().transport().defaultTransport().build(); } }
1 adds the cache qualifier. 2 creates the bean once for the application. Producers that create cache managers should always include the @ApplicationScoped
annotation to avoid creating multiple cache managers.3 creates a new DefaultCacheManager
instance that is bound to the@GreetingCache
qualifier.Cache managers are heavy weight objects. Having more than one cache manager running in your application can degrade performance. When injecting multiple caches, either add the qualifier of each cache to the cache manager producer method or do not add any qualifier.
-
Add the
@GreetingCache
qualifier to your cache injection point.... import javax.inject.Inject; public class GreetingService { @Inject @GreetingCache private Cache<String, String> cache; public String greet(String user) { String cachedValue = cache.get(user); if (cachedValue == null) { cachedValue = "Hello " + user; cache.put(user, cachedValue); } return cachedValue; } }
10.3. Injecting Remote Caches
Set up CDI beans to inject remote caches.
-
Create a cache qualifier annotation.
@Remote("mygreetingcache") (1) @Qualifier @Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD}) @Retention(RetentionPolicy.RUNTIME) @Documented public @interface RemoteGreetingCache { (2) }
1 names the cache to inject. 2 creates a @RemoteGreetingCache
qualifier. -
Add the
@RemoteGreetingCache
qualifier to your cache injection point.public class GreetingService { @Inject @RemoteGreetingCache private RemoteCache<String, String> cache; public String greet(String user) { String cachedValue = cache.get(user); if (cachedValue == null) { cachedValue = "Hello " + user; cache.put(user, cachedValue); } return cachedValue; } }
-
You can inject remote caches without using qualifiers.
... @Inject @Remote("greetingCache") private RemoteCache<String, String> cache;
-
If you have more than one Infinispan cluster, you can create separate remote cache manager producers for each cluster.
... import javax.enterprise.context.ApplicationScoped; public class Config { @RemoteGreetingCache @Produces @ApplicationScoped (1) public ConfigurationBuilder builder = new ConfigurationBuilder(); (2) builder.addServer().host("localhost").port(11222); return new RemoteCacheManager(builder.build()); } }
1 creates the bean once for the application. Producers that create cache managers should always include the @ApplicationScoped
annotation to avoid creating multiple cache managers, which are heavy weight objects.2 creates a new RemoteCacheManager
instance that is bound to the@RemoteGreetingCache
qualifier.
10.4. JCache Caching Annotations
You can use the following JCache caching annotations with CDI managed beans when JCache artifacts are on the classpath:
@CacheResult
-
caches the results of method calls.
@CachePut
-
caches method parameters.
@CacheRemoveEntry
-
removes entries from a cache.
@CacheRemoveAll
-
removes all entries from a cache.
Target type: You can use these JCache caching annotations on methods only. |
To use JCache caching annotations, declare interceptors in the beans.xml
file for your application.
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
version="1.2" bean-discovery-mode="annotated">
<interceptors>
<class>org.infinispan.jcache.annotation.InjectedCacheResultInterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCachePutInterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCacheRemoveEntryInterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCacheRemoveAllInterceptor</class>
</interceptors>
</beans>
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
version="1.2" bean-discovery-mode="annotated">
<interceptors>
<class>org.infinispan.jcache.annotation.CacheResultInterceptor</class>
<class>org.infinispan.jcache.annotation.CachePutInterceptor</class>
<class>org.infinispan.jcache.annotation.CacheRemoveEntryInterceptor</class>
<class>org.infinispan.jcache.annotation.CacheRemoveAllInterceptor</class>
</interceptors>
</beans>
The following example shows how the @CacheResult
annotation caches the results of the GreetingService.greet()
method:
import javax.cache.interceptor.CacheResult;
public class GreetingService {
@CacheResult
public String greet(String user) {
return "Hello" + user;
}
}
With JCache annotations, the default cache uses the fully qualified name of the
annotated method with its parameter types, for example:
org.infinispan.example.GreetingService.greet(java.lang.String)
To use caches other than the default, use the cacheName
attribute to specify
the cache name as in the following example:
@CacheResult(cacheName = "greeting-cache")
10.5. Receiving Cache and Cache Manager Events
You can use CDI Events to receive Cache and cache manager level events.
-
Use the
@Observes
annotation as in the following example:
import javax.enterprise.event.Observes;
import org.infinispan.notifications.cachemanagerlistener.event.CacheStartedEvent;
import org.infinispan.notifications.cachelistener.event.*;
public class GreetingService {
// Cache level events
private void entryRemovedFromCache(@Observes CacheEntryCreatedEvent event) {
...
}
// Cache manager level events
private void cacheStarted(@Observes CacheStartedEvent event) {
...
}
}
11. Infinispan Transactions
Infinispan can be configured to use and to participate in JTA compliant transactions.
Alternatively, if transaction support is disabled, it is equivalent to using autocommit in JDBC calls, where modifications are potentially replicated after every change (if replication is enabled).
On every cache operation Infinispan does the following:
-
Retrieves the current Transaction associated with the thread
-
If not already done, registers XAResource with the transaction manager to be notified when a transaction commits or is rolled back.
In order to do this, the cache has to be provided with a reference to the environment’s TransactionManager.
This is usually done by configuring the cache with the class name of an implementation of the TransactionManagerLookup interface.
When the cache starts, it will create an instance of this class and invoke its getTransactionManager()
method, which returns a reference to the TransactionManager
.
Infinispan ships with several transaction manager lookup classes:
-
EmbeddedTransactionManagerLookup: This provides with a basic transaction manager which should only be used for embedded mode when no other implementation is available. This implementation has some severe limitations to do with concurrent transactions and recovery.
-
JBossStandaloneJTAManagerLookup: If you’re running Infinispan in a standalone environment, or in JBoss AS 7 and earlier, and WildFly 8, 9, and 10, this should be your default choice for transaction manager. It’s a fully fledged transaction manager based on JBoss Transactions which overcomes all the deficiencies of the
EmbeddedTransactionManager
. -
WildflyTransactionManagerLookup: If you’re running Infinispan in WildFly 11 or later, this should be your default choice for transaction manager.
-
GenericTransactionManagerLookup: This is a lookup class that locate transaction managers in the most popular Java EE application servers. If no transaction manager can be found, it defaults on the
EmbeddedTransactionManager
.
WARN: DummyTransactionManagerLookup
has been deprecated in 9.0 and it will be removed in the future.
Use EmbeddedTransactionManagerLookup
instead.
Once initialized, the TransactionManager
can also be obtained from the Cache
itself:
//the cache must have a transactionManagerLookupClass defined
Cache cache = cacheManager.getCache();
//equivalent with calling TransactionManagerLookup.getTransactionManager();
TransactionManager tm = cache.getAdvancedCache().getTransactionManager();
11.1. Configuring transactions
Transactions are configured at cache level. Below is the configuration that affects a transaction behaviour and a small description of each configuration attribute.
<locking
isolation="READ_COMMITTED"/>
<transaction
locking="OPTIMISTIC"
auto-commit="true"
complete-timeout="60000"
mode="NONE"
notifications="true"
reaper-interval="30000"
recovery-cache="__recoveryInfoCacheName__"
stop-timeout="30000"
transaction-manager-lookup="org.infinispan.transaction.lookup.GenericTransactionManagerLookup"/>
or programmatically:
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.locking()
.isolationLevel(IsolationLevel.READ_COMMITTED);
builder.transaction()
.lockingMode(LockingMode.OPTIMISTIC)
.autoCommit(true)
.completedTxTimeout(60000)
.transactionMode(TransactionMode.NON_TRANSACTIONAL)
.useSynchronization(false)
.notifications(true)
.reaperWakeUpInterval(30000)
.cacheStopTimeout(30000)
.transactionManagerLookup(new GenericTransactionManagerLookup())
.recovery()
.enabled(false)
.recoveryInfoCacheName("__recoveryInfoCacheName__");
-
isolation
- configures the isolation level. Check section Isolation Levels for more details. Default isREPEATABLE_READ
. -
locking
- configures whether the cache uses optimistic or pessimistic locking. Check section Transaction Locking for more details. Default isOPTIMISTIC
. -
auto-commit
- if enable, the user does not need to start a transaction manually for a single operation. The transaction is automatically started and committed. Default istrue
. -
complete-timeout
- the duration in milliseconds to keep information about completed transactions. Default is60000
. -
mode
- configures whether the cache is transactional or not. Default isNONE
. The available options are:-
NONE
- non transactional cache -
FULL_XA
- XA transactional cache with recovery enabled. Check section Transaction recovery for more details about recovery. -
NON_DURABLE_XA
- XA transactional cache with recovery disabled. -
NON_XA
- transactional cache with integration via Synchronization instead of XA. Check section Enlisting Synchronizations for details. -
BATCH
- transactional cache using batch to group operations. Check section Batching for details.
-
-
notifications
- enables/disables triggering transactional events in cache listeners. Default istrue
. -
reaper-interval
- the time interval in millisecond at which the thread that cleans up transaction completion information kicks in. Defaults is30000
. -
recovery-cache
- configures the cache name to store the recovery information. Check section Transaction recovery for more details about recovery. Default isrecoveryInfoCacheName
. -
stop-timeout
- the time in millisecond to wait for ongoing transaction when the cache is stopping. Default is30000
. -
transaction-manager-lookup
- configures the fully qualified class name of a class that looks up a reference to ajavax.transaction.TransactionManager
. Default isorg.infinispan.transaction.lookup.GenericTransactionManagerLookup
.
For more details on how Two-Phase-Commit (2PC) is implemented in Infinispan and how locks are being acquired see the section below. More details about the configuration settings are available in Configuration reference.
11.2. Isolation levels
Infinispan offers two isolation levels - READ_COMMITTED and REPEATABLE_READ.
These isolation levels determine when readers see a concurrent write, and are internally implemented using different subclasses of MVCCEntry
, which have different behaviour in how state is committed back to the data container.
Here’s a more detailed example that should help understand the difference between READ_COMMITTED
and REPEATABLE_READ
in the context of Infinispan.
With READ_COMMITTED
, if between two consecutive read calls on the same key, the key has been updated by another transaction, the second read may return the new updated value:
Thread1: tx1.begin()
Thread1: cache.get(k) // returns v
Thread2: tx2.begin()
Thread2: cache.get(k) // returns v
Thread2: cache.put(k, v2)
Thread2: tx2.commit()
Thread1: cache.get(k) // returns v2!
Thread1: tx1.commit()
With REPEATABLE_READ
, the final get will still return v
.
So, if you’re going to retrieve the same key multiple times within a transaction, you should use REPEATABLE_READ
.
However, as read-locks are not acquired even for REPEATABLE_READ
, this phenomena can occur:
cache.get("A") // returns 1
cache.get("B") // returns 1
Thread1: tx1.begin()
Thread1: cache.put("A", 2)
Thread1: cache.put("B", 2)
Thread2: tx2.begin()
Thread2: cache.get("A") // returns 1
Thread1: tx1.commit()
Thread2: cache.get("B") // returns 2
Thread2: tx2.commit()
11.3. Transaction locking
11.3.1. Pessimistic transactional cache
From a lock acquisition perspective, pessimistic transactions obtain locks on keys at the time the key is written.
-
A lock request is sent to the primary owner (can be an explicit lock request or an operation)
-
The primary owner tries to acquire the lock:
-
If it succeed, it sends back a positive reply;
-
Otherwise, a negative reply is sent and the transaction is rollback.
-
As an example:
transactionManager.begin();
cache.put(k1,v1); //k1 is locked.
cache.remove(k2); //k2 is locked when this returns
transactionManager.commit();
When cache.put(k1,v1)
returns, k1
is locked and no other transaction running anywhere in the cluster can write to it.
Reading k1
is still possible.
The lock on k1
is released when the transaction completes (commits or rollbacks).
For conditional operations, the validation is performed in the originator. |
11.3.2. Optimistic transactional cache
With optimistic transactions locks are being acquired at transaction prepare time and are only being held up to the point the transaction commits (or rollbacks). This is different from the 5.0 default locking model where local locks are being acquire on writes and cluster locks are being acquired during prepare time.
-
The prepare is sent to all the owners.
-
The primary owners try to acquire the locks needed:
-
If locking succeeds, it performs the write skew check.
-
If the write skew check succeeds (or is disabled), send a positive reply.
-
Otherwise, a negative reply is sent and the transaction is rolled back.
-
As an example:
transactionManager.begin();
cache.put(k1,v1);
cache.remove(k2);
transactionManager.commit(); //at prepare time, K1 and K2 is locked until committed/rolled back.
For conditional commands, the validation still happens on the originator. |
11.3.3. What do I need - pessimistic or optimistic transactions?
From a use case perspective, optimistic transactions should be used when there is not a lot of contention between multiple transactions running at the same time. That is because the optimistic transactions rollback if data has changed between the time it was read and the time it was committed (with write skew check enabled).
On the other hand, pessimistic transactions might be a better fit when there is high contention on the keys and transaction rollbacks are less desirable. Pessimistic transactions are more costly by their nature: each write operation potentially involves a RPC for lock acquisition.
11.4. Write Skews
Write skews occur when two transactions independently and simultaneously read and write to the same key. The result of a write skew is that both transactions successfully commit updates to the same key but with different values.
Infinispan automatically performs write skew checks to ensure data consistency for REPEATABLE_READ
isolation levels in optimistic transactions. This allows Infinispan to detect and roll back one of the transactions.
When operating in LOCAL
mode, write skew checks rely on Java object
references to compare differences, which provides a reliable technique for
checking for write skews.
11.4.1. Forcing write locks on keys in pessimitic transactions
To avoid write skews with pessimistic transactions, lock keys at read-time with Flag.FORCE_WRITE_LOCK
.
|
Compare the following code snippets for an example of Flag.FORCE_WRITE_LOCK
:
// begin the transaction
if (!cache.getAdvancedCache().lock(key)) {
// abort the transaction because the key was not locked
} else {
cache.get(key);
cache.put(key, value);
// commit the transaction
}
// begin the transaction
try {
// throws an exception if the key is not locked.
cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get(key);
cache.put(key, value);
} catch (CacheException e) {
// mark the transaction rollback-only
}
// commit or rollback the transaction
11.5. Dealing with exceptions
If a CacheException (or a subclass of it) is thrown by a cache method within the scope of a JTA transaction, then the transaction is automatically marked for rollback.
11.6. Enlisting Synchronizations
By default Infinispan registers itself as a first class participant in distributed transactions through XAResource. There are situations where Infinispan is not required to be a participant in the transaction, but only to be notified by its lifecycle (prepare, complete): e.g. in the case Infinispan is used as a 2nd level cache in Hibernate.
Infinispan allows transaction enlistment through Synchronization.
To enable it just use NON_XA
transaction mode.
Synchronization
s have the advantage that they allow TransactionManager
to optimize 2PC with a 1PC where only one other resource is enlisted with that transaction (last resource commit optimization).
E.g. Hibernate second level cache: if Infinispan registers itself with the TransactionManager
as a XAResource
than at commit time, the TransactionManager
sees two XAResource
(cache and database) and does not make this optimization.
Having to coordinate between two resources it needs to write the tx log to disk.
On the other hand, registering Infinispan as a Synchronization
makes the TransactionManager
skip writing the log to the disk (performance improvement).
11.7. Batching
Batching allows atomicity and some characteristics of a transaction, but not full-blown JTA or XA capabilities. Batching is often a lot lighter and cheaper than a full-blown transaction.
Generally speaking, one should use batching API whenever the only participant in the transaction is an Infinispan cluster.
On the other hand, JTA transactions (involving TransactionManager ) should be used whenever the transactions involves multiple systems.
E.g. considering the "Hello world!" of transactions: transferring money from one bank account to the other.
If both accounts are stored within Infinispan, then batching can be used.
If one account is in a database and the other is Infinispan, then distributed transactions are required.
|
You do not have to have a transaction manager defined to use batching. |
11.7.1. API
Once you have configured your cache to use batching, you use it by calling startBatch()
and endBatch()
on Cache
. E.g.,
Cache cache = cacheManager.getCache();
// not using a batch
cache.put("key", "value"); // will replicate immediately
// using a batch
cache.startBatch();
cache.put("k1", "value");
cache.put("k2", "value");
cache.put("k2", "value");
cache.endBatch(true); // This will now replicate the modifications since the batch was started.
// a new batch
cache.startBatch();
cache.put("k1", "value");
cache.put("k2", "value");
cache.put("k3", "value");
cache.endBatch(false); // This will "discard" changes made in the batch
11.7.2. Batching and JTA
Behind the scenes, the batching functionality starts a JTA transaction, and all the invocations in that scope are associated with it.
For this it uses a very simple (e.g. no recovery) internal TransactionManager
implementation.
With batching, you get:
-
Locks you acquire during an invocation are held until the batch completes
-
Changes are all replicated around the cluster in a batch as part of the batch completion process. Reduces replication chatter for each update in the batch.
-
If synchronous replication or invalidation are used, a failure in replication/invalidation will cause the batch to roll back.
-
All the transaction related configurations apply for batching as well.
11.8. Transaction recovery
Recovery is a feature of XA transactions, which deal with the eventuality of a resource or possibly even the transaction manager failing, and recovering accordingly from such a situation.
11.8.1. When to use recovery
Consider a distributed transaction in which money is transferred from an account stored in an external database to an account stored in Infinispan.
When TransactionManager.commit()
is invoked, both resources prepare successfully (1st phase). During the commit (2nd) phase, the database successfully applies the changes whilst Infinispan fails before receiving the commit request from the transaction manager.
At this point the system is in an inconsistent state: money is taken from the account in the external database but not visible yet in Infinispan (since locks are only released during 2nd phase of a two-phase commit protocol).
Recovery deals with this situation to make sure data in both the database and Infinispan ends up in a consistent state.
11.8.2. How does it work
Recovery is coordinated by the transaction manager. The transaction manager works with Infinispan to determine the list of in-doubt transactions that require manual intervention and informs the system administrator (via email, log alerts, etc). This process is transaction manager specific, but generally requires some configuration on the transaction manager.
Knowing the in-doubt transaction ids, the system administrator can now connect to the Infinispan cluster and replay the commit of transactions or force the rollback. Infinispan provides JMX tooling for this - this is explained extensively in the Transaction recovery and reconciliation section.
11.8.3. Configuring recovery
Recovery is not enabled by default in Infinispan.
If disabled, the TransactionManager
won’t be able to work with Infinispan to determine the in-doubt transactions.
The Transaction configuration section shows how to enable it.
NOTE: recovery-cache
attribute is not mandatory and it is configured per-cache.
For recovery to work, mode must be set to FULL_XA , since full-blown XA transactions are needed.
|
11.8.4. Recovery cache
In order to track in-doubt transactions and be able to reply them, Infinispan caches all transaction state for future use. This state is held only for in-doubt transaction, being removed for successfully completed transactions after when the commit/rollback phase completed.
This in-doubt transaction data is held within a local cache: this allows one to configure swapping this info to disk through cache loader in the case it gets too big.
This cache can be specified through the recovery-cache
configuration attribute.
If not specified Infinispan will configure a local cache for you.
It is possible (though not mandated) to share same recovery cache between all the Infinispan caches that have recovery enabled. If the default recovery cache is overridden, then the specified recovery cache must use a TransactionManagerLookup that returns a different transaction manager than the one used by the cache itself.
11.8.5. Integration with the transaction manager
Even though this is transaction manager specific, generally a transaction manager would need a reference to a XAResource
implementation in order to invoke XAResource.recover()
on it.
In order to obtain a reference to an Infinispan XAResource
following API can be used:
XAResource xar = cache.getAdvancedCache().getXAResource();
It is a common practice to run the recovery in a different process from the one running the transaction.
11.8.6. Reconciliation
The transaction manager informs the system administrator on in-doubt transaction in a proprietary way. At this stage it is assumed that the system administrator knows transaction’s XID (a byte array).
A normal recovery flow is:
-
STEP 1: The system administrator connects to an Infinispan server through JMX, and lists the in doubt transactions. The image below demonstrates JConsole connecting to an Infinispan node that has an in doubt transaction.
The status of each in-doubt transaction is displayed(in this example " PREPARED "). There might be multiple elements in the status field, e.g. "PREPARED" and "COMMITTED" in the case the transaction committed on certain nodes but not on all of them.
-
STEP 2: The system administrator visually maps the XID received from the transaction manager to an Infinispan internal id, represented as a number. This step is needed because the XID, a byte array, cannot conveniently be passed to the JMX tool (e.g. JConsole) and then re-assembled on Infinispan’s side.
-
STEP 3: The system administrator forces the transaction’s commit/rollback through the corresponding jmx operation, based on the internal id. The image below is obtained by forcing the commit of the transaction based on its internal id.
All JMX operations described above can be executed on any node, regardless of where the transaction originated. |
Force commit/rollback based on XID
XID-based JMX operations for forcing in-doubt transactions' commit/rollback are available as well: these methods receive byte[] arrays describing the XID instead of the number associated with the transactions (as previously described at step 2). These can be useful e.g. if one wants to set up an automatic completion job for certain in-doubt transactions. This process is plugged into transaction manager’s recovery and has access to the transaction manager’s XID objects.
11.8.7. Want to know more?
The recovery design document describes in more detail the insides of transaction recovery implementation.
12. Functional Map API
Infinispan provides an experimental API for interacting with your data which takes advantage of the functional programming additions and improved asynchronous programming capabilities available in Java 8.
Infinispan’s Functional Map API is a distilled map-like asynchronous API which uses functions to interact with data.
12.1. Asynchronous and Lazy
Being an asynchronous API, all methods that return a single result,
return a CompletableFuture which wraps the result, so you can use the
resources of your system more efficiently by having the possibility to
receive callbacks when the
CompletableFuture
has completed, or you can chain or compose them with other CompletableFuture.
For those operations that return multiple results, the API returns instances of a Traversable interface which offers a lazy pull-style API for working with multiple results.
Traversable
, being a lazy pull-style API, can still be asynchronous underneath since the user can decide to work on the traversable at a later stage, and the Traversable
implementation itself can decide when to compute those results.
12.2. Function transparency
Since the content of the functions is transparent to Infinispan, the API
has been split into 3 interfaces for read-only (
ReadOnlyMap
), read-write (
ReadWriteMap
) and write-only (
WriteOnlyMap
) operations respectively, in order to provide hints to the Infinispan
internals on the type of work needed to support functions.
12.3. Constructing Functional Maps
To construct any of the read-only, write-only or read-write map
instances, an Infinispan
AdvancedCache
is required, which is retrieved from the Cache Manager, and using the
AdvancedCache
, static method
factory methods are used to create
ReadOnlyMap
,
ReadWriteMap
or
WriteOnlyMap
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.impl.*;
import org.infinispan.AdvancedCache;
AdvancedCache<String, String> cache = ...
FunctionalMapImpl<String, String> functionalMap = FunctionalMapImpl.create(cache);
ReadOnlyMap<String, String> readOnlyMap = ReadOnlyMapImpl.create(functionalMap);
WriteOnlyMap<String, String> writeOnlyMap = WriteOnlyMapImpl.create(functionalMap);
ReadWriteMap<String, String> readWriteMap = ReadWriteMapImpl.create(functionalMap);
At this stage, the Functional Map API is experimental and hence the way FunctionalMap, ReadOnlyMap, WriteOnlyMap and ReadWriteMap are constructed is temporary. |
12.4. Read-Only Map API
Read-only operations have the advantage that no locks are acquired for the duration of the operation. Here’s an example on how to the equivalent operation for Map.get(K):
import org.infinispan.functional.EntryView.ReadEntryView;
import org.infinispan.functional.FunctionalMap.ReadOnlyMap;
ReadOnlyMap<String, String> readOnlyMap = ...
CompletableFuture<Optional<String>> readFuture = readOnlyMap.eval("key1", ReadEntryView::find);
readFuture.thenAccept(System.out::println);
Read-only map also exposes operations to retrieve multiple keys in one go:
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.Traversable;
ReadOnlyMap<String, String> readOnlyMap = ...
Set<String> keys = new HashSet<>(Arrays.asList("key1", "key2"));
Traversable<String> values = readOnlyMap.evalMany(keys, ReadEntryView::get);
values.forEach(System.out::println);
Finally, read-only map also exposes methods to read all existing keys as well as entries, which include both key and value information.
12.4.1. Read-Only Entry View
The function parameters for read-only maps provide the user with a read-only entry view to interact with the data in the cache, which include these operations:
-
key()
method returns the key for which this function is being executed. -
find()
returns a Java 8Optional
wrapping the value if present, otherwise it returns an empty optional. Unless the value is guaranteed to be associated with the key, it’s recommended to usefind()
to verify whether there’s a value associated with the key. -
get()
returns the value associated with the key. If the key has no value associated with it, callingget()
throws aNoSuchElementException
.get()
can be considered as a shortcut ofReadEntryView.find().get()
which should be used only when the caller has guarantees that there’s definitely a value associated with the key. -
findMetaParam(Class<T> type)
allows metadata parameter information associated with the cache entry to be looked up, for example: entry lifespan, last accessed time…etc. See Metadata Parameter Handling to find out more.
12.5. Write-Only Map API
Write-only operations include operations that insert or update data in the cache and also removals. Crucially, a write-only operation does not attempt to read any previous value associated with the key. This is an important optimization since that means neither the cluster nor any persistence stores will be looked up to retrieve previous values. In the main Infinispan Cache, this kind of optimization was achieved using a local-only per-invocation flag, but the use case is so common that in this new functional API, this optimization is provided as a first-class citizen.
Using
write-only map API
, an operation equivalent to
javax.cache.Cache
(JCache
)
's void returning
put
can be achieved this way, followed by an attempt to read the stored
value using the read-only map API:
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "value1",
(v, view) -> view.set(v));
CompletableFuture<String> readFuture = writeFuture.thenCompose(r ->
readOnlyMap.eval("key1", ReadEntryView::get));
readFuture.thenAccept(System.out::println);
Multiple key/value pairs can be stored in one go using
evalMany
API:
WriteOnlyMap<String, String> writeOnlyMap = ...
Map<K, String> data = new HashMap<>();
data.put("key1", "value1");
data.put("key2", "value2");
CompletableFuture<Void> writerAllFuture = writeOnlyMap.evalMany(data, (v, view) -> view.set(v));
writerAllFuture.thenAccept(x -> "Write completed");
To remove all contents of the cache, there are two possibilities with
different semantics. If using
evalAll
each cached entry is iterated over and the function is called
with that entry’s information. Using this method also results in listeners being invoked.
WriteOnlyMap<String, String> writeOnlyMap = ...
CompletableFuture<Void> removeAllFuture = writeOnlyMap.evalAll(WriteEntryView::remove);
removeAllFuture.thenAccept(x -> "All entries removed");
The alternative way to remove all entries is to call
truncate
operation which clears the entire cache contents in one go without
invoking any listeners and is best-effort:
WriteOnlyMap<String, String> writeOnlyMap = ...
CompletableFuture<Void> truncateFuture = writeOnlyMap.truncate();
truncateFuture.thenAccept(x -> "Cache contents cleared");
12.5.1. Write-Only Entry View
The function parameters for write-only maps provide the user with a write-only entry view to modify the data in the cache, which include these operations:
-
set(V, MetaParam.Writable…)
method allows for a new value to be associated with the cache entry for which this function is executed, and it optionally takes zero or more metadata parameters to be stored along with the value. See Metadata Parameter Handling for more information. -
remove()
method removes the cache entry, including both value and metadata parameters associated with this key.
12.6. Read-Write Map API
The final type of operations we have are readwrite operations, and within
this category CAS-like (CompareAndSwap) operations can be found.
This type of operations require previous value associated with the key
to be read and for locks to be acquired before executing the function.
The vast majority of operations within
ConcurrentMap
and
JCache
APIs fall within this category, and they can easily be implemented using the
read-write map API
. Moreover, with
read-write map API
, you can make CASlike comparisons not only based on value equality
but based on metadata parameter equality such as version information,
and you can send back previous value or boolean instances to signal
whether the CASlike comparison succeeded.
Implementing a write operation that returns the previous value associated with the cache entry is easy to achieve with the read-write map API:
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
ReadWriteMap<String, String> readWriteMap = ...
CompletableFuture<Optional<String>> readWriteFuture = readWriteMap.eval("key1", "value1",
(v, view) -> {
Optional<V> prev = rw.find();
view.set(v);
return prev;
});
readWriteFuture.thenAccept(System.out::println);
ConcurrentMap.replace(K, V, V)
is a replace function that compares the
value present in the map and if it’s equals to the value passed in as
first parameter, the second value is stored, returning a boolean
indicating whether the replace was successfully completed. This operation
can easily be implemented using the read-write map API:
ReadWriteMap<String, String> readWriteMap = ...
String oldValue = "old-value";
CompletableFuture<Boolean> replaceFuture = readWriteMap.eval("key1", "value1", (v, view) -> {
return view.find().map(prev -> {
if (prev.equals(oldValue)) {
rw.set(v);
return true; // previous value present and equals to the expected one
}
return false; // previous value associated with key does not match
}).orElse(false); // no value associated with this key
});
replaceFuture.thenAccept(replaced -> System.out.printf("Value was replaced? %s%n", replaced));
The function in the example above captures oldValue which is an
external value to the function which is valid use case.
|
Read-write map API contains evalMany
and evalAll
operations which behave
similar to the write-only map offerings, except that they enable previous
value and metadata parameters to be read.
12.6.1. Read-Write Entry View
The function parameters for read-write maps provide the user with the possibility to query the information associated with the key, including value and metadata parameters, and the user can also use this read-write entry view to modify the data in the cache.
The operations are exposed by read-write entry views are a union of the operations exposed by read-only entry views and write-only entry views.
12.7. Metadata Parameter Handling
Metadata parameters provide extra information about the cache entry, such as version information, lifespan, last accessed/used time…etc. Some of these can be provided by the user, e.g. version, lifespan…etc, but some others are computed internally and can only be queried, e.g. last accessed/used time.
The functional map API provides a flexible way to store metadata parameters
along with an cache entry. To be able to store a metadata parameter, it must
extend
MetaParam.Writable
interface, and implement the methods to allow the
internal logic to extra the data. Storing is done via the
set(V, MetaParam.Writable…)
method in the write-only entry view or read-write entry view function parameters.
Querying metadata parameters is available via the
findMetaParam(Class)
method
available via read-write entry view or
read-only entry views or function parameters.
Here is an example showing how to store metadata parameters and how to query them:
import java.time.Duration;
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.MetaParam.*;
WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "value1",
(v, view) -> view.set(v, new MetaLifespan(Duration.ofHours(1).toMillis())));
CompletableFuture<MetaLifespan> readFuture = writeFuture.thenCompose(r ->
readOnlyMap.eval("key1", view -> view.findMetaParam(MetaLifespan.class).get()));
readFuture.thenAccept(System.out::println);
If the metadata parameter is generic, for example
MetaEntryVersion<T>
, retrieving the metadata parameter along with a specific type can be tricky
if using .class
static helper in a class because it does not return a
Class<T>
but only Class
, and hence any generic information in the class is
lost:
ReadOnlyMap<String, String> readOnlyMap = ...
CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
// If caller depends on the typed information, this is not an ideal way to retrieve it
// If the caller does not depend on the specific type, this works just fine.
Optional<MetaEntryVersion> version = view.findMetaParam(MetaEntryVersion.class);
return view.get();
});
When generic information is important the user can define a static helper
method that coerces the static class retrieval to the type requested,
and then use that helper method in the call to findMetaParam
:
class MetaEntryVersion<T> implements MetaParam.Writable<EntryVersion<T>> {
...
public static <T> T type() { return (T) MetaEntryVersion.class; }
...
}
ReadOnlyMap<String, String> readOnlyMap = ...
CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
// The caller wants guarantees that the metadata parameter for version is numeric
// e.g. to query the actual version information
Optional<MetaEntryVersion<Long>> version = view.findMetaParam(MetaEntryVersion.type());
return view.get();
});
Finally, users are free to create new instances of metadata parameters to suit their needs. They are stored and retrieved in the very same way as done for the metadata parameters already provided by the functional map API.
12.8. Invocation Parameter
Per-invocation parameters
are applied to regular functional map API calls to
alter the behaviour of certain aspects. Adding per invocation parameters is
done using the
withParams(Param<?>…)
method.
Param.FutureMode
tweaks whether a method returning a
CompletableFuture
will span a thread to invoke the method, or instead will use the caller
thread. By default, whenever a call is made to a method returning a
CompletableFuture
, a separate thread will be span to execute the method asynchronously.
However, if the caller will immediately block waiting for the
CompletableFuture
to complete, spanning a different thread is wasteful, and hence
Param.FutureMode.COMPLETED
can be passed as per-invocation parameter to avoid creating that extra thread. Example:
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.Param.*;
ReadOnlyMap<String, String> readOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMapCompleted = readOnlyMap.withParams(FutureMode.COMPLETED);
Optional<String> readFuture = readOnlyMapCompleted.eval("key1", ReadEntryView::find).get();
Param.PersistenceMode controls whether a write operation will be propagated
to a persistence store. The default behaviour is for all write-operations
to be propagated to the persistence store if the cache is configured with
a persistence store. By passing PersistenceMode.SKIP as parameter,
the write operation skips the persistence store and its effects are only
seen in the in-memory contents of the cache. PersistenceMode.SKIP can
be used to implement an
Cache.evict()
method which removes data from memory but leaves the persistence store
untouched:
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.Param.*;
WriteOnlyMap<String, String> writeOnlyMap = ...
WriteOnlyMap<String, String> skiPersistMap = writeOnlyMap.withParams(PersistenceMode.SKIP);
CompletableFuture<Void> removeFuture = skiPersistMap.eval("key1", WriteEntryView::remove);
Note that there’s no need for another PersistenceMode option to skip reading from the persistence store, because a write operation can skip reading previous value from the store by calling a write-only operation via the WriteOnlyMap.
Finally, new Param implementations are normally provided by the functional map API since they tweak how the internal logic works. So, for the most part of users, they should limit themselves to using the Param instances exposed by the API. The exception to this rule would be advanced users who decide to add new interceptors to the internal stack. These users have the ability to query these parameters within the interceptors.
12.9. Functional Listeners
The functional map offers a listener API, where clients can register for and get notified when events take place. These notifications are post-event, so that means the events are received after the event has happened.
The listeners that can be registered are split into two categories: write listeners and read-write listeners.
12.9.1. Write Listeners
Write listeners enable user to register listeners for any cache entry write events that happen in either a read-write or write-only functional map.
Listeners for write events cannot distinguish between cache entry created and cache entry modify/update events because they don’t have access to the previous value. All they know is that a new non-null entry has been written.
However, write event listeners can distinguish between entry removals
and cache entry create/modify-update events because they can query
what the new entry’s value via
ReadEntryView.find()
method.
Adding a write listener is done via the WriteListeners interface
which is accessible via both
ReadWriteMap.listeners()
and
WriteOnlyMap.listeners()
method.
A write listener implementation can be defined either passing a function
to
onWrite(Consumer<ReadEntryView<K, V>>)
method, or passing a
WriteListener implementation to
add(WriteListener<K, V>)
method.
Either way, all these methods return an
AutoCloseable
instance that can be used to de-register the function listener:
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.Listeners.WriteListeners.WriteListener;
WriteOnlyMap<String, String> woMap = ...
AutoCloseable writeFunctionCloseHandler = woMap.listeners().onWrite(written -> {
// `written` is a ReadEntryView of the written entry
System.out.printf("Written: %s%n", written.get());
});
AutoCloseable writeCloseHanlder = woMap.listeners().add(new WriteListener<String, String>() {
@Override
public void onWrite(ReadEntryView<K, V> written) {
System.out.printf("Written: %s%n", written.get());
}
});
// Either wrap handler in a try section to have it auto close...
try(writeFunctionCloseHandler) {
// Write entries using read-write or write-only functional map API
...
}
// Or close manually
writeCloseHanlder.close();
12.9.2. Read-Write Listeners
Read-write listeners enable users to register listeners for cache entry created, modified and removed events, and also register listeners for any cache entry write events.
Entry created, modified and removed events can only be fired when these originate on a read-write functional map, since this is the only one that guarantees that the previous value has been read, and hence the differentiation between create, modified and removed can be fully guaranteed.
Adding a read-write listener is done via the
ReadWriteListeners
interface which is accessible via
ReadWriteMap.listeners()
method.
If interested in only one of the event types, the simplest way to add a
listener is to pass a function to either
onCreate
,
onModify
or
onRemove
methods. All these methods return an AutoCloseable instance that can be
used to de-register the function listener:
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
ReadWriteMap<String, String> rwMap = ...
AutoCloseable createClose = rwMap.listeners().onCreate(created -> {
// `created` is a ReadEntryView of the created entry
System.out.printf("Created: %s%n", created.get());
});
AutoCloseable modifyClose = rwMap.listeners().onModify((before, after) -> {
// `before` is a ReadEntryView of the entry before update
// `after` is a ReadEntryView of the entry after update
System.out.printf("Before: %s%n", before.get());
System.out.printf("After: %s%n", after.get());
});
AutoCloseable removeClose = rwMap.listeners().onRemove(removed -> {
// `removed` is a ReadEntryView of the removed entry
System.out.printf("Removed: %s%n", removed.get());
});
AutoCloseable writeClose = woMap.listeners().onWrite(written -> {
// `written` is a ReadEntryView of the written entry
System.out.printf("Written: %s%n", written.get());
});
...
// Either wrap handler in a try section to have it auto close...
try(createClose) {
// Create entries using read-write functional map API
...
}
// Or close manually
modifyClose.close();
If listening for two or more event types, it’s better to pass in an
implementation of
ReadWriteListener
interface via the
ReadWriteListeners.add()
method. ReadWriteListener
offers the same onCreate
/onModify
/onRemove
callbacks with default method implementations that are empty:
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.Listeners.ReadWriteListeners.ReadWriteListener;
ReadWriteMap<String, String> rwMap = ...
AutoCloseable readWriteClose = rwMap.listeners.add(new ReadWriteListener<String, String>() {
@Override
public void onCreate(ReadEntryView<String, String> created) {
System.out.printf("Created: %s%n", created.get());
}
@Override
public void onModify(ReadEntryView<String, String> before, ReadEntryView<String, String> after) {
System.out.printf("Before: %s%n", before.get());
System.out.printf("After: %s%n", after.get());
}
@Override
public void onRemove(ReadEntryView<String, String> removed) {
System.out.printf("Removed: %s%n", removed.get());
}
);
AutoCloseable writeClose = rwMap.listeners.add(new WriteListener<String, String>() {
@Override
public void onWrite(ReadEntryView<K, V> written) {
System.out.printf("Written: %s%n", written.get());
}
);
// Either wrap handler in a try section to have it auto close...
try(readWriteClose) {
// Create/update/remove entries using read-write functional map API
...
}
// Or close manually
writeClose.close();
12.10. Marshalling of Functions
Running functional map in a cluster of nodes involves marshalling and replication of the operation parameters under certain circumstances.
To be more precise, when write operations are executed in a cluster, regardless of read-write or write-only operations, all the parameters to the method and the functions are replicated to other nodes.
There are multiple ways in which a function can be marshalled. The simplest
way, which is also the most costly option in terms of payload size, is
to mark the function as
Serializable
:
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
WriteOnlyMap<String, String> writeOnlyMap = ...
// Force a function to be Serializable
Consumer<WriteEntryView<String>> function =
(Consumer<WriteEntryView<String>> & Serializable) wv -> wv.set("one");
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);
Infinispan provides overloads for all functional methods that make lambdas passed directly to the API serializable by default; the compiler automatically selects this overload if that’s possible. Therefore you can call
WriteOnlyMap<String, String> writeOnlyMap = ...
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", wv -> wv.set("one"));
without doing the cast described above.
A more economical way to marshall a function is to provide an Infinispan
Externalizer
for it:
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.Externalizer;
import org.infinispan.commons.marshall.SerializeFunctionWith;
WriteOnlyMap<String, String> writeOnlyMap = ...
// Force a function to be Serializable
Consumer<WriteEntryView<String>> function = new SetStringConstant<>();
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);
@SerializeFunctionWith(value = SetStringConstant.Externalizer0.class)
class SetStringConstant implements Consumer<WriteEntryView<String>> {
@Override
public void accept(WriteEntryView<String> view) {
view.set("value1");
}
public static final class Externalizer0 implements Externalizer<Object> {
public void writeObject(ObjectOutput oo, Object o) {
// No-op
}
public Object readObject(ObjectInput input) {
return new SetStringConstant<>();
}
}
}
To help users take advantage of the tiny payloads generated by
Externalizer
-based functions, the functional API comes with a helper
class called
org.infinispan.commons.marshall.MarshallableFunctions
which provides marshallable functions for some of the most commonly user
functions.
In fact, all the functions required to implement
ConcurrentMap
and
JCache
using the functional map API have been defined in
MarshallableFunctions
.
For example, here is an implementation of JCache’s
boolean putIfAbsent(K, V)
using functional map API which can be run in a cluster:
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.MarshallableFunctions;
ReadWriteMap<String, String> readWriteMap = ...
CompletableFuture<Boolean> future = readWriteMap.eval("key1,
MarshallableFunctions.setValueIfAbsentReturnBoolean());
future.thenAccept(stored -> System.out.printf("Value was put? %s%n", stored));
12.11. Use Cases for Functional API
This new API is meant to complement existing Key/Value Infinispan API
offerings, so you’ll still be able to use
ConcurrentMap
or
JCache
standard APIs if that’s what suits your use case best.
The target audience for this new API is either:
-
Distributed or persistent caching/inmemorydatagrid users that want to benefit from CompletableFuture and/or Traversable for async/lazy data grid or caching data manipulation. The clear advantage here is that threads do not need to be idle waiting for remote operations to complete, but instead these can be notified when remote operations complete and then chain them with other subsequent operations.
-
Users who want to go beyond the standard operations exposed by
ConcurrentMap
andJCache
, for example, if you want to do a replace operation using metadata parameter equality instead of value equality, or if you want to retrieve metadata information from values and so on.
13. Executing Code in the Grid
The main benefit of a Cache is the ability to very quickly lookup a value by its key, even across machines. In fact this use alone is probably the reason many users use Infinispan. However Infinispan can provide many more benefits that aren’t immediately apparent. Since Infinispan is usually used in a cluster of machines we also have features available that can help utilize the entire cluster for performing the user’s desired workload.
This section covers only executing code in the grid using an embedded cache, if you are using a remote cache you should review details about executing code in the remote grid. |
13.1. Cluster Executor
Since you have a group of machines, it makes sense to leverage their combined
computing power for executing code on all of them them.
The cache manager comes with a nice utility that allows you to
execute arbitrary code in the cluster. Note this feature requires no Cache to be used. This
Cluster Executor
can be retrieved by calling executor() on the EmbeddedCacheManager
. This executor is retrievable
in both clustered and non clustered configurations.
The ClusterExecutor is specifically designed for executing code where the code is not reliant upon the data in a cache and is used instead as a way to help users to execute code easily in the cluster. |
This manager was built specifically using Java 8 and such has functional APIs in mind, thus all methods take a functional inteface as an argument. Also since these arguments will be sent to other nodes they need to be serializable. We even used a nice trick to ensure our lambdas are immediately Serializable. That is by having the arguments implement both Serializable and the real argument type (ie. Runnable or Function). The JRE will pick the most specific class when determining which method to invoke, so in that case your lambdas will always be serializable. It is also possible to use an Externalizer to possibly reduce message size further.
The manager by default will submit a given command to all nodes in the cluster including the node
where it was submitted from. You can control on which nodes the task is executed on
by using the filterTargets
methods as is explained in the section.
13.1.1. Filtering execution nodes
It is possible to limit on which nodes the command will be ran. For example you may want to only run a computation on machines in the same rack. Or you may want to perform an operation once in the local site and again on a different site. A cluster executor can limit what nodes it sends requests to at the scope of same or different machine, rack or site level.
EmbeddedCacheManager manager = ...;
manager.executor().filterTargets(ClusterExecutionPolicy.SAME_RACK).submit(...)
To use this topology base filtering you must enable topology aware consistent hashing through Server Hinting.
You can also filter using a predicate based on the Address
of the node. This can also
be optionally combined with topology based filtering in the previous code snippet.
We also allow the target node to be chosen by any means using a Predicate
that
will filter out which nodes can be considered for execution. Note this can also be combined
with Topology filtering at the same time to allow even more fine control of where you code
is executed within the cluster.
EmbeddedCacheManager manager = ...;
// Just filter
manager.executor().filterTargets(a -> a.equals(..)).submit(...)
// Filter only those in the desired topology
manager.executor().filterTargets(ClusterExecutionPolicy.SAME_SITE, a -> a.equals(..)).submit(...)
13.1.2. Timeout
Cluster Executor allows for a timeout to be set per invocation. This defaults to the distributed sync timeout
as configured on the Transport Configuration. This timeout works in both a clustered and non clustered
cache manager. The executor may or may not interrupt the threads executing a task when the timeout expires. However
when the timeout occurs any Consumer
or Future
will be completed passing back a TimeoutException
.
This value can be overridden by ivoking the
timeout
method and supplying the desired duration.
13.1.3. Single Node Submission
Cluster Executor can also run in single node submission mode instead of submitting the command
to all nodes it will instead pick one of the nodes that would have normally received the command
and instead submit it it to only one. Each submission will possibly use a different node to
execute the task on. This can be very useful to use the ClusterExecutor as a
java.util.concurrent.Executor
which you may have noticed that ClusterExecutor implements.
EmbeddedCacheManager manager = ...;
manager.executor().singleNodeSubmission().submit(...)
Failover
When running in single node submission it may be desirable to also allow the Cluster Executor handle cases where an exception occurred during the processing of a given command by retrying the command again. When this occurs the Cluster Executor will choose a single node again to resubmit the command to up to the desired number of failover attempts. Note the chosen node could be any node that passes the topology or predicate check. Failover is enabled by invoking the overridden singleNodeSubmission method. The given command will be resubmitted again to a single node until either the command completes without exception or the total submission amount is equal to the provided failover count.
13.1.4. Example: PI Approximation
This example shows how you can use the ClusterExecutor to estimate the value of PI.
Pi approximation can greatly benefit from parallel distributed execution via Cluster Executor. Recall that area of the square is Sa = 4r2 and area of the circle is Ca=pi*r2. Substituting r2 from the second equation into the first one it turns out that pi = 4 * Ca/Sa. Now, image that we can shoot very large number of darts into a square; if we take ratio of darts that land inside a circle over a total number of darts shot we will approximate Ca/Sa value. Since we know that pi = 4 * Ca/Sa we can easily derive approximate value of pi. The more darts we shoot the better approximation we get. In the example below we shoot 1 billion darts but instead of "shooting" them serially we parallelize work of dart shooting across the entire Infinispan cluster. Note this will work in a cluster of 1 was well, but will be slower.
public class PiAppx {
public static void main (String [] arg){
EmbeddedCacheManager cacheManager = ..
boolean isCluster = ..
int numPoints = 1_000_000_000;
int numServers = isCluster ? cacheManager.getMembers().size() : 1;
int numberPerWorker = numPoints / numServers;
ClusterExecutor clusterExecutor = cacheManager.executor();
long start = System.currentTimeMillis();
// We receive results concurrently - need to handle that
AtomicLong countCircle = new AtomicLong();
CompletableFuture<Void> fut = clusterExecutor.submitConsumer(m -> {
int insideCircleCount = 0;
for (int i = 0; i < numberPerWorker; i++) {
double x = Math.random();
double y = Math.random();
if (insideCircle(x, y))
insideCircleCount++;
}
return insideCircleCount;
}, (address, count, throwable) -> {
if (throwable != null) {
throwable.printStackTrace();
System.out.println("Address: " + address + " encountered an error: " + throwable);
} else {
countCircle.getAndAdd(count);
}
});
fut.whenComplete((v, t) -> {
// This is invoked after all nodes have responded with a value or exception
if (t != null) {
t.printStackTrace();
System.out.println("Exception encountered while waiting:" + t);
} else {
double appxPi = 4.0 * countCircle.get() / numPoints;
System.out.println("Distributed PI appx is " + appxPi +
" using " + numServers + " node(s), completed in " + (System.currentTimeMillis() - start) + " ms");
}
});
// May have to sleep here to keep alive if no user threads left
}
private static boolean insideCircle(double x, double y) {
return (Math.pow(x - 0.5, 2) + Math.pow(y - 0.5, 2))
<= Math.pow(0.5, 2);
}
}
14. Streams
You may want to process a subset or all data in the cache to produce a result. This may bring thoughts of Map Reduce. Infinispan allows the user to do something very similar but utilizes the standard JRE APIs to do so. Java 8 introduced the concept of a Stream which allows functional-style operations on collections rather than having to procedurally iterate over the data yourself. Stream operations can be implemented in a fashion very similar to MapReduce. Streams, just like MapReduce allow you to perform processing upon the entirety of your cache, possibly a very large data set, but in an efficient way.
Streams are the preferred method when dealing with data that exists in the cache because streams automatically adjust to cluster topology changes. |
Also since we can control how the entries are iterated upon we can more efficiently perform the operations in a cache that is distributed if you want it to perform all of the operations across the cluster concurrently.
A stream is retrieved from the entrySet, keySet or values collections returned from the Cache by invoking the stream or parallelStream methods.
14.1. Common stream operations
This section highlights various options that are present irrespective of what type of underlying cache you are using.
14.2. Key filtering
It is possible to filter the stream so that it only operates upon a given subset of keys. This can be done
by invoking the
filterKeys
method on the CacheStream
. This should always be used over a Predicate
filter
and will be faster if the predicate was holding all keys.
If you are familiar with the AdvancedCache
interface you may be wondering why you even use
getAll
over this keyFilter. There are some small benefits (mostly smaller payloads) to using getAll
if you need the entries as is and need them all in memory in the local node. However if you
need to do processing on these elements a stream is recommended since you will get both
distributed and threaded parallelism for free.
14.3. Segment based filtering
This is an advanced feature and should only be used with deep knowledge of Infinispan segment and hashing techniques. These segments based filtering can be useful if you need to segment data into separate invocations. This can be useful when integrating with other tools such as Apache Spark. |
This option is only supported for replicated and distributed caches. This allows the user to operate upon
a subset of data at a time as determined by the
KeyPartitioner.
The segments can be filtered by invoking
filterKeySegments
method on the CacheStream
. This is applied after the key filter but before any intermediate operations are performed.
14.4. Local/Invalidation
A stream used with a local or invalidation cache can be used just the same way you would use a stream on a regular collection. Infinispan handles all of the translations if necessary behind the scenes and works with all of the more interesting options (ie. storeAsBinary and a cache loader). Only data local to the node where the stream operation is performed will be used, for example invalidation only uses local entries.
14.5. Example
The code below takes a cache and returns a map with all the cache entries whose values contain the string "JBoss"
Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(e -> e.getValue().contains("JBoss"))
.collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));
14.6. Distribution/Replication/Scattered
This is where streams come into their stride. When a stream operation is performed it will send the various intermediate and terminal operations to each node that has pertinent data. This allows processing the intermediate values on the nodes owning the data, and only sending the final results back to the originating nodes, improving performance.
14.6.1. Rehash Aware
Internally the data is segmented and each node only performs the operations upon the data it owns as a primary owner. This allows for data to be processed evenly, assuming segments are granular enough to provide for equal amounts of data on each node.
When you are utilizing a distributed cache, the data can be reshuffled between nodes when a new node joins or leaves. Distributed Streams handle this reshuffling of data automatically so you don’t have to worry about monitoring when nodes leave or join the cluster. Reshuffled entries may be processed a second time, and we keep track of the processed entries at the key level or at the segment level (depending on the terminal operation) to limit the amount of duplicate processing.
It is possible but highly discouraged to disable rehash awareness on the stream. This should only be considered if your request can handle only seeing a subset of data if a rehash occurs. This can be done by invoking CacheStream.disableRehashAware() The performance gain for most operations when a rehash doesn’t occur is completely negligible. The only exceptions are for iterator and forEach, which will use less memory, since they do not have to keep track of processed keys.
Please rethink disabling rehash awareness unless you really know what you are doing. |
14.6.2. Serialization
Since the operations are sent across to other nodes they must be serializable by Infinispan marshalling. This allows the operations to be sent to the other nodes.
The simplest way is to use a CacheStream instance and use a lambda just as you would normally. Infinispan overrides all of the various Stream intermediate and terminal methods to take Serializable versions of the arguments (ie. SerializableFunction, SerializablePredicate…) You can find these methods at CacheStream. This relies on the spec to pick the most specific method as defined here.
In our previous example we used a Collector
to collect all the results into a Map
.
Unfortunately the Collectors
class doesn’t produce Serializable instances. Thus if you need to use these, there are two ways to do so:
One option would be to use the
CacheCollectors
class which allows for a Supplier<Collector>
to be provided. This instance could then use the
Collectors
to supply a Collector
which is not serialized.
Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(e -> e.getValue().contains("Jboss"))
.collect(CacheCollectors.serializableCollector(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue)));
Alternatively, you can avoid the use of
CacheCollectors
and instead use the overloaded collect
methods that take Supplier<Collector>
.
These overloaded collect
methods are only available via CacheStream
interface.
Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(e -> e.getValue().contains("Jboss"))
.collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));
If however you are not able to use the Cache
and CacheStream
interfaces you cannot utilize Serializable
arguments and you must instead cast the lambdas to be Serializable
manually by casting the lambda to multiple
interfaces. It is not a pretty sight but it gets the job done.
Map<Object, String> jbossValues = map.entrySet().stream()
.filter((Serializable & Predicate<Map.Entry<Object, String>>) e -> e.getValue().contains("Jboss"))
.collect(CacheCollectors.serializableCollector(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue)));
The recommended and most performant way is to use an
AdvancedExternalizer
as this provides the smallest payload. Unfortunately
this means you cannot use lamdbas as advanced externalizers require defining
the class before hand.
You can use an advanced externalizer as shown below:
Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(new ContainsFilter("Jboss"))
.collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));
class ContainsFilter implements Predicate<Map.Entry<Object, String>> {
private final String target;
ContainsFilter(String target) {
this.target = target;
}
@Override
public boolean test(Map.Entry<Object, String> e) {
return e.getValue().contains(target);
}
}
class JbossFilterExternalizer implements AdvancedExternalizer<ContainsFilter> {
@Override
public Set<Class<? extends ContainsFilter>> getTypeClasses() {
return Util.asSet(ContainsFilter.class);
}
@Override
public Integer getId() {
return CUSTOM_ID;
}
@Override
public void writeObject(ObjectOutput output, ContainsFilter object) throws IOException {
output.writeUTF(object.target);
}
@Override
public ContainsFilter readObject(ObjectInput input) throws IOException, ClassNotFoundException {
return new ContainsFilter(input.readUTF());
}
}
You could also use an advanced externalizer for the collector supplier to reduce the payload size even further.
Map<Object, String> map = (Map<Object, String>) cache.entrySet().stream()
.filter(new ContainsFilter("Jboss"))
.collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));
class ToMapCollectorSupplier<K, U> implements Supplier<Collector<Map.Entry<K, U>, ?, Map<K, U>>> {
static final ToMapCollectorSupplier INSTANCE = new ToMapCollectorSupplier();
private ToMapCollectorSupplier() { }
@Override
public Collector<Map.Entry<K, U>, ?, Map<K, U>> get() {
return Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue);
}
}
class ToMapCollectorSupplierExternalizer implements AdvancedExternalizer<ToMapCollectorSupplier> {
@Override
public Set<Class<? extends ToMapCollectorSupplier>> getTypeClasses() {
return Util.asSet(ToMapCollectorSupplier.class);
}
@Override
public Integer getId() {
return CUSTOM_ID;
}
@Override
public void writeObject(ObjectOutput output, ToMapCollectorSupplier object) throws IOException {
}
@Override
public ToMapCollectorSupplier readObject(ObjectInput input) throws IOException, ClassNotFoundException {
return ToMapCollectorSupplier.INSTANCE;
}
}
14.7. Parallel Computation
Distributed streams by default try to parallelize as much as possible. It is possible for the end user to control this and actually they always have to control one of the options. There are 2 ways these streams are parallelized.
Local to each node When a stream is created from the cache collection the end user can choose between invoking stream or parallelStream method. Depending on if the parallel stream was picked will enable multiple threading for each node locally. Note that some operations like a rehash aware iterator and forEach operations will always use a sequential stream locally. This could be enhanced at some point to allow for parallel streams locally.
Users should be careful when using local parallelism as it requires having a large number of entries or operations
that are computationally expensive to be faster. Also it should be noted that if a user uses a parallel
stream with forEach
that the action should not block as this would be executed on the common pool, which
is normally reserved for computation operations.
Remote requests When there are multiple nodes it may be desirable to control whether the remote requests are all processed at the same time concurrently or one at a time. By default all terminal operations except the iterator perform concurrent requests. The iterator, method to reduce overall memory pressure on the local node, only performs sequential requests which actually performs slightly better.
If a user wishes to change this default however they can do so by invoking the
sequentialDistribution
or parallelDistribution
methods on the CacheStream
.
14.8. Task timeout
It is possible to set a timeout value for the operation requests. This timeout is used only for remote requests timing out and it is on a per request basis. The former means the local execution will not timeout and the latter means if you have a failover scenario as described above the subsequent requests each have a new timeout. If no timeout is specified it uses the replication timeout as a default timeout. You can set the timeout in your task by doing the following:
CacheStream<Map.Entry<Object, String>> stream = cache.entrySet().stream();
stream.timeout(1, TimeUnit.MINUTES);
For more information about this, please check the java doc in timeout javadoc.
14.9. Injection
The Stream
has a terminal operation called
forEach
which allows for running some sort of side effect operation on the data. In this case it may be desirable to get a reference to
the Cache
that is backing this Stream. If your Consumer
implements the
CacheAware
interface the injectCache
method be invoked before the accept method from the Consumer
interface.
14.10. Distributed Stream execution
Distributed streams execution works in a fashion very similiar to map reduce. Except in this case we are sending zero to many intermediate operations (map, filter etc.) and a single terminal operation to the various nodes. The operation basically comes down to the following:
-
The desired segments are grouped by which node is the primary owner of the given segment
-
A request is generated to send to each remote node that contains the intermediate and terminal operations including which segments it should process
-
The terminal operation will be performed locally if necessary
-
Each remote node will receive this request and run the operations and subsequently send the response back
-
-
The local node will then gather the local response and remote responses together performing any kind of reduction required by the operations themselves.
-
Final reduced response is then returned to the user
In most cases all operations are fully distributed, as in the operations are all fully applied on each remote node and usually only the last operation or something related may be reapplied to reduce the results from multiple nodes. One important note is that intermediate values do not actually have to be serializable, it is the last value sent back that is the part desired (exceptions for various operations will be highlighted below).
Terminal operator distributed result reductions The following paragraphs describe how the distributed reductions work for the various terminal operators. Some of these are special in that an intermediate value may be required to be serializable instead of the final result.
- allMatch noneMatch anyMatch
-
The allMatch operation is ran on each node and then all the results are logically anded together locally to get the appropriate value. The noneMatch and anyMatch operations use a logical or instead. These methods also have early termination support, stopping remote and local operations once the final result is known.
- collect
-
The collect method is interesting in that it can do a few extra steps. The remote node performs everything as normal except it doesn’t perform the final finisher upon the result and instead sends back the fully combined results. The local thread then combines the remote and local result into a value which is then finally finished. The key here to remember is that the final value doesn’t have to be serializable but rather the values produced from the supplier and combiner methods.
- count
-
The count method just adds the numbers together from each node.
- findAny findFirst
-
The findAny operation returns just the first value they find, whether it was from a remote node or locally. Note this supports early termination in that once a value is found it will not process others. Note the findFirst method is special since it requires a sorted intermediate operation, which is detailed in the exceptions section.
- max min
-
The max and min methods find the respective min or max value on each node then a final reduction is performed locally to ensure only the min or max across all nodes is returned.
- reduce
-
The various reduce methods 1 , 2 , 3 will end up serializing the result as much as the accumulator can do. Then it will accumulate the local and remote results together locally, before combining if you have provided that. Note this means a value coming from the combiner doesn’t have to be Serializable.
14.11. Key based rehash aware operators
The iterator, spliterator and forEach are unlike the other terminal operators in that the rehash awareness has to keep track of what keys per segment have been processed instead of just segments. This is to guarantee an exactly once (iterator & spliterator) or at least once behavior (forEach) even under cluster membership changes.
The iterator
and spliterator
operators when invoked on a remote node will return back batches
of entries, where the next batch is only sent back after the last has been fully consumed. This
batching is done to limit how many entries are in memory at a given time. The user node will hold
onto which keys it has processed and when a given segment is completed it will release those keys from
memory. This is why sequential processing is preferred for the iterator method, so only a subset of segment
keys are held in memory at once, instead of from all nodes.
The forEach()
method also returns batches, but it returns a batch of keys after it has finished processing
at least a batch worth of keys. This way the originating node can know what keys have been processed
already to reduce chances of processing the same entry again. Unfortunately this means it is possible
to have an at least once behavior when a node goes down unexpectedly. In this case that node could have
been processing a batch and not yet completed one and those entries that were processed but not
in a completed batch will be ran again when the rehash failure operation occurs. Note that adding a
node will not cause this issue as the rehash failover doesn’t occur until all responses are received.
These operations batch sizes are both controlled by the same value which can be configured by invoking
distributedBatchSize
method on the CacheStream
. This value will default to the chunkSize
configured in state transfer.
Unfortunately this value is a tradeoff with memory usage vs performance vs at least once and your
mileage may vary.
Using iterator
with replicated and distributed caches
When a node is the primary or backup owner of all requested segments for a distributed stream, Infinispan performs the iterator
or spliterator
terminal operations locally, which optimizes performance as remote iterations are more resource intensive.
This optimization applies to both replicated and distributed caches. However, Infinispan performs iterations remotely when using cache stores that are both shared
and have write-behind
enabled. In this case performing the iterations remotely ensures consistency.
14.12. Intermediate operation exceptions
There are some intermediate operations that have special exceptions, these are skip, peek, sorted 1 2. & distinct. All of these methods have some sort of artificial iterator implanted in the stream processing to guarantee correctness, they are documented as below. Note this means these operations may cause possibly severe performance degradation.
- Skip
-
An artificial iterator is implanted up to the intermediate skip operation. Then results are brought locally so it can skip the appropriate amount of elements.
- Sorted
-
WARNING: This operation requires having all entries in memory on the local node. An artificial iterator is implanted up to the intermediate sorted operation. All results are sorted locally. There are possible plans to have a distributed sort which returns batches of elements, but this is not yet implemented.
- Distinct
-
WARNING: This operation requires having all or nearly all entries in memory on the local node. Distinct is performed on each remote node and then an artificial iterator returns those distinct values. Then finally all of those results have a distinct operation performed upon them.
The rest of the intermediate operations are fully distributed as one would expect.
14.13. Examples
Word Count
Word count is a classic, if overused, example of map/reduce paradigm. Assume we have a mapping of key → sentence stored on Infinispan nodes. Key is a String, each sentence is also a String, and we have to count occurrence of all words in all sentences available. The implementation of such a distributed task could be defined as follows:
public class WordCountExample {
/**
* In this example replace c1 and c2 with
* real Cache references
*
* @param args
*/
public static void main(String[] args) {
Cache<String, String> c1 = ...;
Cache<String, String> c2 = ...;
c1.put("1", "Hello world here I am");
c2.put("2", "Infinispan rules the world");
c1.put("3", "JUDCon is in Boston");
c2.put("4", "JBoss World is in Boston as well");
c1.put("12","JBoss Application Server");
c2.put("15", "Hello world");
c1.put("14", "Infinispan community");
c2.put("15", "Hello world");
c1.put("111", "Infinispan open source");
c2.put("112", "Boston is close to Toronto");
c1.put("113", "Toronto is a capital of Ontario");
c2.put("114", "JUDCon is cool");
c1.put("211", "JBoss World is awesome");
c2.put("212", "JBoss rules");
c1.put("213", "JBoss division of RedHat ");
c2.put("214", "RedHat community");
Map<String, Long> wordCountMap = c1.entrySet().parallelStream()
.map(e -> e.getValue().split("\\s"))
.flatMap(Arrays::stream)
.collect(() -> Collectors.groupingBy(Function.identity(), Collectors.counting()));
}
}
In this case it is pretty simple to do the word count from the previous example.
However what if we want to find the most frequent word in the example? If you take a second to think about this case you will realize you need to have all words counted and available locally first. Thus we actually have a few options.
We could use a finisher on the collector, which is invoked on the user thread after all the results have been collected. Some redundant lines have been removed from the previous example.
public class WordCountExample {
public static void main(String[] args) {
// Lines removed
String mostFrequentWord = c1.entrySet().parallelStream()
.map(e -> e.getValue().split("\\s"))
.flatMap(Arrays::stream)
.collect(() -> Collectors.collectingAndThen(
Collectors.groupingBy(Function.identity(), Collectors.counting()),
wordCountMap -> {
String mostFrequent = null;
long maxCount = 0;
for (Map.Entry<String, Long> e : wordCountMap.entrySet()) {
int count = e.getValue().intValue();
if (count > maxCount) {
maxCount = count;
mostFrequent = e.getKey();
}
}
return mostFrequent;
}));
}
Unfortunately the last step is only going to be ran in a single thread, which if we have a lot of words could be quite slow. Maybe there is another way to parallelize this with Streams.
We mentioned before we are in the local node after processing, so we could actually use a stream on the map results. We can therefore use a parallel stream on the results.
public class WordFrequencyExample {
public static void main(String[] args) {
// Lines removed
Map<String, Long> wordCount = c1.entrySet().parallelStream()
.map(e -> e.getValue().split("\\s"))
.flatMap(Arrays::stream)
.collect(() -> Collectors.groupingBy(Function.identity(), Collectors.counting()));
Optional<Map.Entry<String, Long>> mostFrequent = wordCount.entrySet().parallelStream().reduce(
(e1, e2) -> e1.getValue() > e2.getValue() ? e1 : e2);
This way you can still utilize all of the cores locally when calculating the most frequent element.
Remove specific entries
Distributed streams can also be used as a way to modify data where it lives. For example you may want to remove all entries in your cache that contain a specific word.
public class RemoveBadWords {
public static void main(String[] args) {
// Lines removed
String word = ..
c1.entrySet().parallelStream()
.filter(e -> e.getValue().contains(word))
.forEach((c, e) -> c.remove(e.getKey()));
If we carefully note what is serialized and what is not, we notice that only the word along with the operations are serialized across to other nods as it is captured by the lambda. However the real saving piece is that the cache operation is performed on the primary owner thus reducing the amount of network traffic required to remove these values from the cache. The cache is not captured by the lambda as we provide a special BiConsumer method override that when invoked on each node passes the cache to the BiConsumer
One thing to keep in mind using the forEach
command in this manner is that the underlying
stream obtains no locks. The cache remove operation will still obtain locks naturally, but
the value could have changed from what the stream saw. That means that the entry could
have been changed after the stream read it but the remove actually removed it.
We have specifically added a new variant which is called LockedStream
.
Plenty of other examples
The Streams
API is a JRE tool and there are lots of examples for using it.
Just remember that your operations need to be Serializable in some way.
15. JCache (JSR-107) API
Infinispan provides an implementation of JCache 1.0 API ( JSR-107 ). JCache specifies a standard Java API for caching temporary Java objects in memory. Caching java objects can help get around bottlenecks arising from using data that is expensive to retrieve (i.e. DB or web service), or data that is hard to calculate. Caching these type of objects in memory can help speed up application performance by retrieving the data directly from memory instead of doing an expensive roundtrip or recalculation. This document specifies how to use JCache with the Infinispan implementation of the specification, and explains key aspects of the API.
15.1. Creating embedded caches
-
Ensure that
cache-api
is on your classpath. -
Add the following dependency to your
pom.xml
:<dependency> <groupId>org.infinispan</groupId> <artifactId>infinispan-jcache</artifactId> </dependency>
-
Create embedded caches that use the default JCache API configuration as follows:
import javax.cache.*;
import javax.cache.configuration.*;
// Retrieve the system wide cache manager
CacheManager cacheManager = Caching.getCachingProvider().getCacheManager();
// Define a named cache with default JCache configuration
Cache<String, String> cache = cacheManager.createCache("namedCache",
new MutableConfiguration<String, String>());
15.1.1. Configuring embedded caches
-
Pass the URI for custom Infinispan configuration to the
CachingProvider.getCacheManager(URI)
call as follows:
import java.net.URI;
import javax.cache.*;
import javax.cache.configuration.*;
// Load configuration from an absolute filesystem path
URI uri = URI.create("file:///path/to/infinispan.xml");
// Load configuration from a classpath resource
// URI uri = this.getClass().getClassLoader().getResource("infinispan.xml").toURI();
// Create a cache manager using the above configuration
CacheManager cacheManager = Caching.getCachingProvider().getCacheManager(uri, this.getClass().getClassLoader(), null);
By default, the JCache API specifies that data should be stored as
storeByValue , so that object state mutations outside of operations to the
cache, won’t have an impact in the objects stored in the cache. Infinispan
has so far implemented this using serialization/marshalling to make copies to
store in the cache, and that way adhere to the spec. Hence, if using default
JCache configuration with Infinispan, data stored must be marshallable.
|
Alternatively, JCache can be configured to store data by reference (just like Infinispan or JDK Collections work). To do that, simply call:
Cache<String, String> cache = cacheManager.createCache("namedCache",
new MutableConfiguration<String, String>().setStoreByValue(false));
15.2. Creating remote caches
-
Ensure that
cache-api
is on your classpath. -
Add the following dependency to your
pom.xml
:<dependency> <groupId>org.infinispan</groupId> <artifactId>infinispan-jcache-remote</artifactId> </dependency>
-
Create caches on remote Infinispan servers and use the default JCache API configuration as follows:
import javax.cache.*;
import javax.cache.configuration.*;
// Retrieve the system wide cache manager via org.infinispan.jcache.remote.JCachingProvider
CacheManager cacheManager = Caching.getCachingProvider("org.infinispan.jcache.remote.JCachingProvider").getCacheManager();
// Define a named cache with default JCache configuration
Cache<String, String> cache = cacheManager.createCache("remoteNamedCache",
new MutableConfiguration<String, String>());
15.2.1. Configuring remote caches
Hot Rod configuration files include infinispan.client.hotrod.cache.*
properties that you can use to customize remote caches.
-
Pass the URI for your
hotrod-client.properties
file to theCachingProvider.getCacheManager(URI)
call as follows:
import javax.cache.*;
import javax.cache.configuration.*;
// Load configuration from an absolute filesystem path
URI uri = URI.create("file:///path/to/hotrod-client.properties");
// Load configuration from a classpath resource
// URI uri = this.getClass().getClassLoader().getResource("hotrod-client.properties").toURI();
// Retrieve the system wide cache manager via org.infinispan.jcache.remote.JCachingProvider
CacheManager cacheManager = Caching.getCachingProvider("org.infinispan.jcache.remote.JCachingProvider")
.getCacheManager(uri, this.getClass().getClassLoader(), null);
15.3. Store and retrieve data
Even though JCache API does not extend neither java.util.Map not java.util.concurrent.ConcurrentMap, it providers a key/value API to store and retrieve data:
import javax.cache.*;
import javax.cache.configuration.*;
CacheManager cacheManager = Caching.getCachingProvider().getCacheManager();
Cache<String, String> cache = cacheManager.createCache("namedCache",
new MutableConfiguration<String, String>());
cache.put("hello", "world"); // Notice that javax.cache.Cache.put(K) returns void!
String value = cache.get("hello"); // Returns "world"
Contrary to standard java.util.Map,
javax.cache.Cache
comes with two basic put methods called put and getAndPut. The former returns
void
whereas the latter returns the previous value associated with the key.
So, the equivalent of java.util.Map.put(K)
in JCache is javax.cache.Cache.getAndPut(K).
Even though JCache API only covers standalone caching, it can be plugged with a persistence store, and has been designed with clustering or distribution in mind. The reason why javax.cache.Cache offers two put methods is because standard java.util.Map put call forces implementors to calculate the previous value. When a persistent store is in use, or the cache is distributed, returning the previous value could be an expensive operation, and often users call standard java.util.Map.put(K) without using the return value. Hence, JCache users need to think about whether the return value is relevant to them, in which case they need to call javax.cache.Cache.getAndPut(K) , otherwise they can call java.util.Map.put(K, V) which avoids returning the potentially expensive operation of returning the previous value. |
15.4. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs
Here’s a brief comparison of the data manipulation APIs provided by java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs.
Operation | java.util.concurrent.ConcurrentMap<K, V> | javax.cache.Cache<K, V> |
---|---|---|
store and no return |
N/A |
|
store and return previous value |
|
|
store if not present |
|
|
retrieve |
|
|
delete if present |
|
|
delete and return previous value |
|
|
delete conditional |
|
|
replace if present |
|
|
replace and return previous value |
|
|
replace conditional |
|
|
Comparing the two APIs, it’s obvious to see that, where possible, JCache avoids returning the previous value to avoid operations doing expensive network or IO operations. This is an overriding principle in the design of JCache API. In fact, there’s a set of operations that are present in java.util.concurrent.ConcurrentMap , but are not present in the javax.cache.Cache because they could be expensive to compute in a distributed cache. The only exception is iterating over the contents of the cache:
Operation | java.util.concurrent.ConcurrentMap<K, V> | javax.cache.Cache<K, V> |
---|---|---|
calculate size of cache |
|
N/A |
return all keys in the cache |
|
N/A |
return all values in the cache |
|
N/A |
return all entries in the cache |
|
N/A |
iterate over the cache |
use |
|
15.5. Clustering JCache instances
Infinispan JCache implementation goes beyond the specification in order to provide the possibility to cluster caches using the standard API. Given a Infinispan configuration file configured to replicate caches like this:
<infinispan>
<cache-container default-cache="namedCache">
<transport cluster="jcache-cluster" />
<replicated-cache name="namedCache" />
</cache-container>
</infinispan>
You can create a cluster of caches using this code:
import javax.cache.*;
import java.net.URI;
// For multiple cache managers to be constructed with the standard JCache API
// and live in the same JVM, either their names, or their classloaders, must
// be different.
// This example shows how to force their classloaders to be different.
// An alternative method would have been to duplicate the XML file and give
// it a different name, but this results in unnecessary file duplication.
ClassLoader tccl = Thread.currentThread().getContextClassLoader();
CacheManager cacheManager1 = Caching.getCachingProvider().getCacheManager(
URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));
CacheManager cacheManager2 = Caching.getCachingProvider().getCacheManager(
URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));
Cache<String, String> cache1 = cacheManager1.getCache("namedCache");
Cache<String, String> cache2 = cacheManager2.getCache("namedCache");
cache1.put("hello", "world");
String value = cache2.get("hello"); // Returns "world" if clustering is working
// --
public static class TestClassLoader extends ClassLoader {
public TestClassLoader(ClassLoader parent) {
super(parent);
}
}
16. Multimap Cache
MutimapCache is a type of Infinispan Cache that maps keys to values in which each key can contain multiple values.
16.1. Installation and configuration
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-multimap</artifactId>
</dependency>
16.2. MultimapCache API
MultimapCache API exposes several methods to interact with the Multimap Cache. These methods are non-blocking in most cases; see limitations for more information.
public interface MultimapCache<K, V> {
CompletableFuture<Optional<CacheEntry<K, Collection<V>>>> getEntry(K key);
CompletableFuture<Void> remove(SerializablePredicate<? super V> p);
CompletableFuture<Void> put(K key, V value);
CompletableFuture<Collection<V>> get(K key);
CompletableFuture<Boolean> remove(K key);
CompletableFuture<Boolean> remove(K key, V value);
CompletableFuture<Void> remove(Predicate<? super V> p);
CompletableFuture<Boolean> containsKey(K key);
CompletableFuture<Boolean> containsValue(V value);
CompletableFuture<Boolean> containsEntry(K key, V value);
CompletableFuture<Long> size();
boolean supportsDuplicates();
}
Puts a key-value pair in the multimap cache.
MultimapCache<String, String> multimapCache = ...;
multimapCache.put("girlNames", "marie")
.thenCompose(r1 -> multimapCache.put("girlNames", "oihana"))
.thenCompose(r3 -> multimapCache.get("girlNames"))
.thenAccept(names -> {
if(names.contains("marie"))
System.out.println("Marie is a girl name");
if(names.contains("oihana"))
System.out.println("Oihana is a girl name");
});
The output of this code is as follows:
Marie is a girl name
Oihana is a girl name
Asynchronous that returns a view collection of the values associated with key in this multimap cache, if any. Any changes to the retrieved collection won’t change the values in this multimap cache. When this method returns an empty collection, it means the key was not found.
Asynchronous that removes the entry associated with the key from the multimap cache, if such exists.
Asynchronous that removes a key-value pair from the multimap cache, if such exists.
Asynchronous method. Removes every value that match the given predicate.
Asynchronous that returns true if this multimap contains the key.
Asynchronous that returns true if this multimap contains the value in at least one key.
Asynchronous that returns true if this multimap contains at least one key-value pair with the value.
Asynchronous that returns the number of key-value pairs in the multimap cache. It doesn’t return the distinct number of keys.
Asynchronous that returns true if the multimap cache supports duplicates. This means that the content of the multimap can be 'a' → ['1', '1', '2']. For now this method will always return false, as duplicates are not yet supported. The existence of a given value is determined by 'equals' and `hashcode' method’s contract.
16.3. Creating a Multimap Cache
Currently the MultimapCache is configured as a regular cache. This can be done either by code or XML configuration. See how to configure a regular Cache in the section link to [configure a cache].
16.3.1. Embedded mode
// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager cm = ... ;
// create or obtain a MultimapCacheManager passing the EmbeddedCacheManager
MultimapCacheManager multimapCacheManager = EmbeddedMultimapCacheManagerFactory.from(cm);
// define the configuration for the multimap cache
multimapCacheManager.defineConfiguration(multimapCacheName, c.build());
// get the multimap cache
multimapCache = multimapCacheManager.get(multimapCacheName);
16.4. Limitations
In almost every case the Multimap Cache will behave as a regular Cache, but some limitations exist in the current version, as follows:
16.4.1. Support for duplicates
Duplicates are not supported yet. This means that the multimap won’t contain any duplicate key-value pair.
Whenever put method is called, if the key-value pair already exist, this key-value par won’t be added.
Methods used to check if a key-value pair is already present in the Multimap are the equals
and hashcode
.
17. Anchored Keys module
Infinispan version 11 introduces an experimental module that allows scaling up a cluster and adding new nodes without expensive state transfer.
17.1. Background
For background, the preferred way to scale up the storage capacity of a Infinispan cluster
is to use distributed caches.
A distributed cache stores each key/value pair on num-owners
nodes,
and each node can compute the location of a key (aka the key owners) directly.
Infinispan achieves this by statically mapping cache keys to num-segments
consistent hash segments,
and then dynamically mapping segments to nodes based on the cache’s topology
(roughly the current plus the historical membership of the cache).
Whenever a new node joins the cluster, the cache is rebalanced, and the new node replaces an existing node
as the owner of some segments.
The key/value pairs in those segments are copied to the new node and removed from the no-longer-owner node
via state transfer.
Because the allocation of segments to nodes is based on random UUIDs generated at start time, it is common (though less so after ISPN-11679 ), for segments to also move from one old node to another old node. |
17.2. Architecture
The basic idea is to skip the static mapping of keys to segments and to map keys directly to nodes.
When a key/value pair is inserted into the cache, the newest member becomes the anchor owner of that key, and the only node storing the actual value. In order to make the anchor location available without an extra remote lookup, all the other nodes store a reference to the anchor owner.
That way, when another node joins, it only needs to receive the location information from the existing nodes, and values can stay on the anchor owner, minimizing the amount of traffic.
17.3. Limitations
- Only one node can be added at a time
-
An external actor (e.g. a Kubernetes/OpenShift operator, or a human administrator) must monitor the load on the current nodes, and add a new node whenever the newest node is close to "full".
Because the anchor owner information is replicated on all the nodes, and values are never moved off a node, the memory usage of each node will keep growing as new entries and nodes are added. |
- There is no redundancy
-
Every value is only stored on a single node. When a node crashes or even stops gracefully, the values stored on that node are lost.
- Transactions are not supported
-
A later version may add transaction support, but the fact that any node stop or crash loses entries makes transactions a lot less valuable compared to a distributed cache.
- Hot Rod clients do not know the anchor owner
-
Hot Rod clients cannot use the topology information from the servers to locate the anchor owner. Instead, the server receiving a Hot Rod get request must make an additional request to the anchor owner in order to retrieve the value.
17.4. Configuration
The module is still very young and does not yet support many Infinispan features.
Eventually, if it proves useful, it may become another cache mode, just like scattered caches.
For now, configuring a cache with anchored keys requires a replicated cache with a custom element anchored-keys
:
<?xml version="1.0" encoding="UTF-8"?>
<infinispan
xmlns="urn:infinispan:config:12.0"
xmlns:anchored="urn:infinispan:config:anchored:12.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:infinispan:config:12.0
https://infinispan.org/schemas/infinispan-config-12.0.xsd
urn:infinispan:config:anchored:12.0
https://infinispan.org/schemas/infinispan-anchored-config-12.0.xsd">
<cache-container default-cache="default">
<transport/>
<replicated-cache name="default">
<anchored:anchored-keys/>
</replicated-cache>
</cache-container>
</infinispan>
When the <anchored-keys/>
element is present, the module automatically enables anchored keys
and makes some required configuration changes:
-
Disables
await-initial-transfer
-
Enables conflict resolution with the equivalent of
<partition-handling when-split="ALLOW_READ_WRITES" merge-policy="PREFER_NON_NULL"/>
The cache will fail to start if these attributes are explicitly set to other values, if state transfer is disabled, or if transactions are enabled.
17.5. Implementation status
Basic operations are implemented: put
, putIfAbsent
, get
, replace
, remove
, putAll
, getAll
.
17.5.1. Functional commands
The FunctionalMap
API is not implemented.
Other operations that rely on the functional API’s implementation do not work either: merge
, compute
,
computeIfPresent
, computeIfAbsent
.
17.6. Performance considerations
17.6.1. Client/Server Latency
The client always contacts the primary owner, so any read has a
(N-1)/N
probability of requiring a unicast RPC from the primary to the anchor owner.
Writes require the primary to send the value to one node and the anchor address
to all the other nodes, which is currently done with N-1
unicast RPCs.
In theory we could send in parallel one unicast RPC for the value and one multicast RPC for the address, but that would need additional logic to ignore the address on the anchor owner and with TCP multicast RPCs are implemented as parallel unicasts anyway.
17.6.2. Memory overhead
Compared to a distributed cache with one owner, an anchored-keys cache contains copies of all the keys and their locations, plus the overhead of the cache itself.
Therefore, a node with anchored-keys caches should stop accepting new entries when it has less than
(<key size> + <per-key overhead>) * <number of entries not yet inserted>
bytes available.
The number of entries not yet inserted is obviously very hard to estimate. In the future we may provide a way to limit the overhead of key location information, e.g. by using a distributed cache. |
The per-key overhead is lowest for off-heap storage, around 63 bytes:
8 bytes for the entry reference in MemoryAddressHash.memory
,
29 bytes for the off-heap entry header,
and 26 bytes for the serialized RemoteMetadata
with the owner’s address.
The per-key overhead of the ConcurrentHashMap-based on-heap cache,
assuming a 64-bit JVM with compressed OOPS, would be around 92 bytes:
32 bytes for ConcurrentHashMap.Node
, 32 bytes for MetadataImmortalCacheEntry
,
24 bytes for RemoteMetadata
, and 4 bytes in the ConcurrentHashMap.table
array.
17.6.3. State transfer
State transfer does not transfer values, only keys and anchor owner information.
Assuming that the values are much bigger compared to the keys, state transfer for an anchored keys cache should also be much faster compared to the state transfer of a distributed cache of a similar size. But for small values, there may not be a visible improvement.
The initial state transfer does not block a joiner from starting,
because it will just ask another node for the anchor owner.
However, the remote lookups can be expensive, especially in embedded mode,
but also in server mode, if the client is not HASH_DISTRIBUTION_AWARE
.
18. CloudEvents Integration Module (Experimental)
Infinispan version 12 introduces an experimental module that converts Infinispan events to CloudEvents events and sends them to a Kafka topic in structured mode, with the JSON format.
This allows Infinispan be further used as a Knative source.
There are two broad kinds of events, and they can be sent to different Kafka topics:
-
Cache entry modifications: created, updated, removed, expired
-
Audit events: user login, access denied
18.1. Configuration
CloudEvents integration is enabled by adding the module to the global configuration and configuring at least a list of bootstrap Kafka servers and a topic.
<?xml version="1.0" encoding="UTF-8"?>
<infinispan
xmlns="urn:infinispan:config:12.0"
xmlns:ce="urn:infinispan:config:cloudevents:12.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:infinispan:config:12.0
https://infinispan.org/schemas/infinispan-config-12.0.xsd
urn:infinispan:config:cloudevents:12.0
https://infinispan.org/schemas/infinispan-cloudevents-config-12.0.xsd">
<cache-container default-cache="default">
<transport/>
<ce:cloudevents bootstrap-servers="127.0.0.1:9092"
audit-topic="audit"
cache-entries-topic="cache-events"/>
<replicated-cache name="default">
<ce:cloudevents-cache enabled="false"/>
</replicated-cache>
</cache-container>
</infinispan>
GlobalConfigurationBuilder managerBuilder = GlobalConfigurationBuilder.defaultClusteredBuilder();
CloudEventsGlobalConfigurationBuilder cloudEventsGlobalBuilder =
managerBuilder.addModule(CloudEventsGlobalConfigurationBuilder.class);
cloudEventsGlobalBuilder.bootstrapServers("localhost:9092");
cloudEventsGlobalBuilder.cacheEntriesTopic("ispn");
Currently only the list of bootstrap servers, the number of acks, and the cache entries/audit topic names are configurable.
18.2. Event Format
The events are sent in Kafka structured mode, in the JSON event format
This is an example of an event:
{
"specversion": "1.0",
"source": "/infinispan/CLUSTER/testCache",
"type": "org.infinispan.entry.created",
"time": "2020-10-29T22:05:08.767950Z",
"subject": "key-1",
"id": "key-1:CommandInvocation:Test-NodeA:0",
"data": {
"property": "value"
}
}
The source
field starts with /infinispan/
, then the cluster name,
and ends with the cache name.
The type
field is a straightforward mapping of the Infinispan cache entry
event types, prefixed with org.infinispan.entry
.
The data
field is the new entry value (or the old value, for remove events).
If the value is Protostream-encoded, a Java object that can be marshalled
to Protostream, or a Java primitive wrapper, it is converted to JSON.
If the value is not encoded with Protostream or it is a Java object
and the cache manager is configured to use another marshaller,
the marshalled value is written as a string.
If the marshalled value is not a valid UTF-8 string, it is first Base64-encoded.
The subject
field is the affected cache key, converted to a string
using the same mechanism as the values.
The only difference is that the resulting JSON is also wrapped in a string.
TODO: The JSON conversion currently adds \n
and space characters,
which are escaped and preserved in the subject
field value.
We may want to Base64-encode protostream keys instead.
The id
field is composed from the key and a transaction/invocation id.
Expiration events do not have an invocation id, so a random id is generated
instead.
19. Custom Interceptors
Custom interceptors are deprecated in Infinispan and will be removed in a future version. |
Custom interceptors are a way of extending Infinispan by being able to influence or respond to any modifications to cache. Example of such modifications are: elements are added/removed/updated or transactions are committed.
19.1. Adding custom interceptors declaratively
Custom interceptors can be added on a per named cache basis. This is because each named cache have its own interceptor stack. Following xml snippet depicts the ways in which a custom interceptor can be added.
<local-cache name="cacheWithCustomInterceptors">
<!--
Define custom interceptors. All custom interceptors need to extend org.jboss.cache.interceptors.base.CommandInterceptor
-->
<custom-interceptors>
<interceptor position="FIRST" class="com.mycompany.CustomInterceptor1">
<property name="attributeOne">value1</property>
<property name="attributeTwo">value2</property>
</interceptor>
<interceptor position="LAST" class="com.mycompany.CustomInterceptor2"/>
<interceptor index="3" class="com.mycompany.CustomInterceptor1"/>
<interceptor before="org.infinispanpan.interceptors.CallInterceptor" class="com.mycompany.CustomInterceptor2"/>
<interceptor after="org.infinispanpan.interceptors.CallInterceptor" class="com.mycompany.CustomInterceptor1"/>
</custom-interceptors>
</local-cache>
19.2. Adding custom interceptors programatically
In order to do that one needs to obtain a reference to the AdvancedCache
. This can be done as follows:
CacheManager cm = getCacheManager();//magic
Cache aCache = cm.getCache("aName");
AdvancedCache advCache = aCache.getAdvancedCache();
Then one of the addInterceptor() methods should be used to add the actual interceptor. For further documentation refer to AdvancedCache
javadoc.
19.3. Custom interceptor design
When writing a custom interceptor, you need to abide by the following rules.
-
Custom interceptors must declare a public, empty constructor to enable construction.
-
Custom interceptors will have setters for any property defined through property tags used in the XML configuration.
20. Extending Infinispan
Infinispan can be extended to provide the ability for an end user to add additional configurations, operations and components outside of the scope of the ones normally provided by Infinispan.
20.1. Custom Commands
Infinispan makes use of a command/visitor pattern to implement the various top-level methods you see on the public-facing API.
While the core commands - and their corresponding visitors - are hard-coded as a part of Infinispan’s core module, module authors can extend and enhance Infinispan by creating new custom commands.
As a module author (such as infinispan-query, etc.) you can define your own commands.
You do so by:
-
Create a
META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions
file and ensure this is packaged in your jar. -
Implementing
ModuleCommandFactory
andModuleCommandExtensions
-
Specifying the fully-qualified class name of the
ModuleCommandExtensions
implementation inMETA-INF/services/org.infinispan.commands.module.ModuleCommandExtensions
. -
Implement your custom commands and visitors for these commands
20.1.1. An Example
Here is an example of an META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions
file, configured accordingly:
org.infinispan.query.QueryModuleCommandExtensions
20.1.2. Preassigned Custom Command Id Ranges
This is the list of Command
identifiers that are used by Infinispan based modules or frameworks.
Infinispan users should avoid using ids within these ranges. (RANGES to be finalised yet!)
Being this a single byte, ranges can’t be too large.
Infinispan Query: |
100 - 119 |
Hibernate Search: |
120 - 139 |
Hot Rod Server: |
140 - 141 |
20.2. Extending the configuration builders and parsers
If your custom module requires configuration, it is possible to enhance Infinispan’s configuration builders and parsers. Look at the custom module tests for a detail example on how to implement this.