Add Infinispan libraries to your Java project and create embedded caches that store data in the same memory space where you execute application code.

1. Adding Infinispan to your Maven repository

Infinispan Java distributions are available from Maven.

Infinispan artifacts are available from Maven central. See the org.infinispan group for available Infinispan artifacts.

1.1. Configuring your project POM

Configure Project Object Model (POM) files in your project to use Infinispan dependencies for embedded caches, Hot Rod clients, and other capabilities.

Procedure
  1. Open your project pom.xml for editing.

  2. Define the version.infinispan property with the correct Infinispan version.

  3. Include the infinispan-bom in a dependencyManagement section.

    The Bill Of Materials (BOM) controls dependency versions, which avoids version conflicts and means you do not need to set the version for each Infinispan artifact you add as a dependency to your project.

  4. Save and close pom.xml.

The following example shows the Infinispan version and BOM:

<properties>
  <version.infinispan>14.0.33.Final</version.infinispan>
</properties>

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>org.infinispan</groupId>
      <artifactId>infinispan-bom</artifactId>
      <version>${version.infinispan}</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>
Next Steps

Add Infinispan artifacts as dependencies to your pom.xml as required.

2. Creating embedded caches

Infinispan provides an EmbeddedCacheManager API that lets you control both the Cache Manager and embedded cache lifecycles programmatically.

2.1. Adding Infinispan to your project

Add Infinispan to your project to create embedded caches in your applications.

Prerequisites
  • Configure your project to get Infinispan artifacts from the Maven repository.

Procedure
  • Add the infinispan-core artifact as a dependency in your pom.xml as follows:

<dependencies>
  <dependency>
    <groupId>org.infinispan</groupId>
    <artifactId>infinispan-core</artifactId>
  </dependency>
</dependencies>

2.2. Creating and using embedded caches

Infinispan provides a GlobalConfigurationBuilder API that controls the Cache Manager and a ConfigurationBuilder API that configures caches.

Prerequisites
  • Add the infinispan-core artifact as a dependency in your pom.xml.

Procedure
  1. Initialize a CacheManager.

    You must always call the cacheManager.start() method to initialize a CacheManager before you can create caches. Default constructors do this for you but there are overloaded versions of the constructors that do not.

    Cache Managers are also heavyweight objects and Infinispan recommends instantiating only one instance per JVM.

  2. Use the ConfigurationBuilder API to define cache configuration.

  3. Obtain caches with getCache(), createCache(), or getOrCreateCache() methods.

    Infinispan recommends using the getOrCreateCache() method because it either creates a cache on all nodes or returns an existing cache.

  4. If necessary use the PERMANENT flag for caches to survive restarts.

  5. Stop the CacheManager by calling the cacheManager.stop() method to release JVM resources and gracefully shutdown any caches.

// Set up a clustered Cache Manager.
GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder();
// Initialize the default Cache Manager.
DefaultCacheManager cacheManager = new DefaultCacheManager(global.build());
// Create a distributed cache with synchronous replication.
ConfigurationBuilder builder = new ConfigurationBuilder();
                     builder.clustering().cacheMode(CacheMode.DIST_SYNC);
// Obtain a volatile cache.
Cache<String, String> cache = cacheManager.administration().withFlags(CacheContainerAdmin.AdminFlag.VOLATILE).getOrCreateCache("myCache", builder.build());
// Stop the Cache Manager.
cacheManager.stop();
getCache() method

Invoke the getCache(String) method to obtain caches, as follows:

Cache<String, String> myCache = manager.getCache("myCache");

The preceding operation creates a cache named myCache, if it does not already exist, and returns it.

Using the getCache() method creates the cache only on the node where you invoke the method. In other words, it performs a local operation that must be invoked on each node across the cluster. Typically, applications deployed across multiple nodes obtain caches during initialization to ensure that caches are symmetric and exist on each node.

createCache() method

Invoke the createCache() method to create caches dynamically across the entire cluster.

Cache<String, String> myCache = manager.administration().createCache("myCache", "myTemplate");

The preceding operation also automatically creates caches on any nodes that subsequently join the cluster.

Caches that you create with the createCache() method are ephemeral by default. If the entire cluster shuts down, the cache is not automatically created again when it restarts.

PERMANENT flag

Use the PERMANENT flag to ensure that caches can survive restarts.

Cache<String, String> myCache = manager.administration().withFlags(AdminFlag.PERMANENT).createCache("myCache", "myTemplate");

For the PERMANENT flag to take effect, you must enable global state and set a configuration storage provider.

For more information about configuration storage providers, see GlobalStateConfigurationBuilder#configurationStorage().

2.3. Cache API

Infinispan provides a Cache interface that exposes simple methods for adding, retrieving and removing entries, including atomic mechanisms exposed by the JDK’s ConcurrentMap interface. Based on the cache mode used, invoking these methods will trigger a number of things to happen, potentially even including replicating an entry to a remote node or looking up an entry from a remote node, or potentially a cache store.

For simple usage, using the Cache API should be no different from using the JDK Map API, and hence migrating from simple in-memory caches based on a Map to Infinispan’s Cache should be trivial.

Performance Concerns of Certain Map Methods

Certain methods exposed in Map have certain performance consequences when used with Infinispan, such as size() , values() , keySet() and entrySet() . Specific methods on the keySet, values and entrySet are fine for use please see their Javadoc for further details.

Attempting to perform these operations globally would have large performance impact as well as become a scalability bottleneck. As such, these methods should only be used for informational or debugging purposes only.

It should be noted that using certain flags with the withFlags() method can mitigate some of these concerns, please check each method’s documentation for more details.

Mortal and Immortal Data

Further to simply storing entries, Infinispan’s cache API allows you to attach mortality information to data. For example, simply using put(key, value) would create an immortal entry, i.e., an entry that lives in the cache forever, until it is removed (or evicted from memory to prevent running out of memory). If, however, you put data in the cache using put(key, value, lifespan, timeunit) , this creates a mortal entry, i.e., an entry that has a fixed lifespan and expires after that lifespan.

In addition to lifespan , Infinispan also supports maxIdle as an additional metric with which to determine expiration. Any combination of lifespans or maxIdles can be used.

putForExternalRead operation

Infinispan’s Cache class contains a different 'put' operation called putForExternalRead . This operation is particularly useful when Infinispan is used as a temporary cache for data that is persisted elsewhere. Under heavy read scenarios, contention in the cache should not delay the real transactions at hand, since caching should just be an optimization and not something that gets in the way.

To achieve this, putForExternalRead() acts as a put call that only operates if the key is not present in the cache, and fails fast and silently if another thread is trying to store the same key at the same time. In this particular scenario, caching data is a way to optimise the system and it’s not desirable that a failure in caching affects the on-going transaction, hence why failure is handled differently. putForExternalRead() is considered to be a fast operation because regardless of whether it’s successful or not, it doesn’t wait for any locks, and so returns to the caller promptly.

To understand how to use this operation, let’s look at basic example. Imagine a cache of Person instances, each keyed by a PersonId , whose data originates in a separate data store. The following code shows the most common pattern of using putForExternalRead within the context of this example:

// Id of the person to look up, provided by the application
PersonId id = ...;

// Get a reference to the cache where person instances will be stored
Cache<PersonId, Person> cache = ...;

// First, check whether the cache contains the person instance
// associated with with the given id
Person cachedPerson = cache.get(id);

if (cachedPerson == null) {
   // The person is not cached yet, so query the data store with the id
   Person person = dataStore.lookup(id);

   // Cache the person along with the id so that future requests can
   // retrieve it from memory rather than going to the data store
   cache.putForExternalRead(id, person);
} else {
   // The person was found in the cache, so return it to the application
   return cachedPerson;
}

Note that putForExternalRead should never be used as a mechanism to update the cache with a new Person instance originating from application execution (i.e. from a transaction that modifies a Person’s address). When updating cached values, please use the standard put operation, otherwise the possibility of caching corrupt data is likely.

2.3.1. AdvancedCache API

In addition to the simple Cache interface, Infinispan offers an AdvancedCache interface, geared towards extension authors. The AdvancedCache offers the ability to access certain internal components and to apply flags to alter the default behavior of certain cache methods. The following code snippet depicts how an AdvancedCache can be obtained:

AdvancedCache advancedCache = cache.getAdvancedCache();
Flags

Flags are applied to regular cache methods to alter the behavior of certain methods. For a list of all available flags, and their effects, see the Flag enumeration. Flags are applied using AdvancedCache.withFlags() . This builder method can be used to apply any number of flags to a cache invocation, for example:

advancedCache.withFlags(Flag.CACHE_MODE_LOCAL, Flag.SKIP_LOCKING)
   .withFlags(Flag.FORCE_SYNCHRONOUS)
   .put("hello", "world");

2.3.2. Asynchronous API

In addition to synchronous API methods like Cache.put() , Cache.remove() , etc., Infinispan also has an asynchronous, non-blocking API where you can achieve the same results in a non-blocking fashion.

These methods are named in a similar fashion to their blocking counterparts, with "Async" appended.  E.g., Cache.putAsync() , Cache.removeAsync() , etc.  These asynchronous counterparts return a CompletableFuture that contains the actual result of the operation.

For example, in a cache parameterized as Cache<String, String>, Cache.put(String key, String value) returns String while Cache.putAsync(String key, String value) returns CompletableFuture<String>.

Why use such an API?

Non-blocking APIs are powerful in that they provide all of the guarantees of synchronous communications - with the ability to handle communication failures and exceptions - with the ease of not having to block until a call completes.  This allows you to better harness parallelism in your system.  For example:

Set<CompletableFuture<?>> futures = new HashSet<>();
futures.add(cache.putAsync(key1, value1)); // does not block
futures.add(cache.putAsync(key2, value2)); // does not block
futures.add(cache.putAsync(key3, value3)); // does not block

// the remote calls for the 3 puts will effectively be executed
// in parallel, particularly useful if running in distributed mode
// and the 3 keys would typically be pushed to 3 different nodes
// in the cluster

// check that the puts completed successfully
for (CompletableFuture<?> f: futures) f.get();
Which processes actually happen asynchronously?

There are 4 things in Infinispan that can be considered to be on the critical path of a typical write operation. These are, in order of cost:

  • network calls

  • marshalling

  • writing to a cache store (optional)

  • locking

Using the async methods will take the network calls and marshalling off the critical path.  For various technical reasons, writing to a cache store and acquiring locks, however, still happens in the caller’s thread.

3. Programmatically configuring user roles and permissions

Configure security authorization programmatically when using embedded caches in Java applications.

3.1. Infinispan user roles and permissions

Infinispan includes several roles that provide users with permissions to access caches and Infinispan resources.

Role Permissions Description

admin

ALL

Superuser with all permissions including control of the Cache Manager lifecycle.

deployer

ALL_READ, ALL_WRITE, LISTEN, EXEC, MONITOR, CREATE

Can create and delete Infinispan resources in addition to application permissions.

application

ALL_READ, ALL_WRITE, LISTEN, EXEC, MONITOR

Has read and write access to Infinispan resources in addition to observer permissions. Can also listen to events and execute server tasks and scripts.

observer

ALL_READ, MONITOR

Has read access to Infinispan resources in addition to monitor permissions.

monitor

MONITOR

Can view statistics via JMX and the metrics endpoint.

3.1.1. Permissions

User roles are sets of permissions with different access levels.

Table 1. Cache Manager permissions

Permission

Function

Description

CONFIGURATION

defineConfiguration

Defines new cache configurations.

LISTEN

addListener

Registers listeners against a Cache Manager.

LIFECYCLE

stop

Stops the Cache Manager.

CREATE

createCache, removeCache

Create and remove container resources such as caches, counters, schemas, and scripts.

MONITOR

getStats

Allows access to JMX statistics and the metrics endpoint.

ALL

-

Includes all Cache Manager permissions.

Table 2. Cache permissions

Permission

Function

Description

READ

get, contains

Retrieves entries from a cache.

WRITE

put, putIfAbsent, replace, remove, evict

Writes, replaces, removes, evicts data in a cache.

EXEC

distexec, streams

Allows code execution against a cache.

LISTEN

addListener

Registers listeners against a cache.

BULK_READ

keySet, values, entrySet, query

Executes bulk retrieve operations.

BULK_WRITE

clear, putAll

Executes bulk write operations.

LIFECYCLE

start, stop

Starts and stops a cache.

ADMIN

getVersion, addInterceptor*, removeInterceptor, getInterceptorChain, getEvictionManager, getComponentRegistry, getDistributionManager, getAuthorizationManager, evict, getRpcManager, getCacheConfiguration, getCacheManager, getInvocationContextContainer, setAvailability, getDataContainer, getStats, getXAResource

Allows access to underlying components and internal structures.

MONITOR

getStats

Allows access to JMX statistics and the metrics endpoint.

ALL

-

Includes all cache permissions.

ALL_READ

-

Combines the READ and BULK_READ permissions.

ALL_WRITE

-

Combines the WRITE and BULK_WRITE permissions.

Additional resources

3.1.2. Role and permission mappers

Infinispan implements users as a collection of principals. Principals represent either an individual user identity, such as a username, or a group to which the users belong. Internally, these are implemented with the javax.security.auth.Subject class.

To enable authorization, the principals must be mapped to role names, which are then expanded into a set of permissions.

Infinispan includes the PrincipalRoleMapper API for associating security principals to roles, and the RolePermissionMapper API for associating roles with specific permissions.

Infinispan provides the following role and permission mapper implementations:

Cluster role mapper

Stores principal to role mappings in the cluster registry.

Cluster permission mapper

Stores role to permission mappings in the cluster registry. Allows you to dynamically modify user roles and permissions.

Identity role mapper

Uses the principal name as the role name. The type or format of the principal name depends on the source. For example, in an LDAP directory the principal name could be a Distinguished Name (DN).

Common name role mapper

Uses the Common Name (CN) as the role name. You can use this role mapper with an LDAP directory or with client certificates that contain Distinguished Names (DN); for example cn=managers,ou=people,dc=example,dc=com maps to the managers role.

Mapping users to roles and permissions in Infinispan

Consider the following user retrieved from an LDAP server, as a collection of DNs:

CN=myapplication,OU=applications,DC=mycompany
CN=dataprocessors,OU=groups,DC=mycompany
CN=finance,OU=groups,DC=mycompany

Using the Common name role mapper, the user would be mapped to the following roles:

dataprocessors
finance

Infinispan has the following role definitions:

dataprocessors: ALL_WRITE ALL_READ
finance: LISTEN

The user would have the following permissions:

ALL_WRITE ALL_READ LISTEN

3.1.3. Configuring role mappers

Infinispan enables the cluster role mapper and cluster permission mapper by default. To use a different implementation for role mapping, you must configure the role mappers.

Procedure
  1. Open your Infinispan configuration for editing.

  2. Declare the role mapper as part of the security authorization in the Cache Manager configuration.

  3. Save the changes to your configuration.

With embedded caches you can programmatically configure role and permission mappers with the principalRoleMapper() and rolePermissionMapper() methods.

Role mapper configuration
XML
<cache-container>
  <security>
    <authorization>
      <common-name-role-mapper />
    </authorization>
  </security>
</cache-container>
JSON
{
  "infinispan" : {
    "cache-container" : {
      "security" : {
        "authorization" : {
          "common-name-role-mapper": {}
        }
      }
    }
  }
}
YAML
infinispan:
  cacheContainer:
    security:
      authorization:
        commonNameRoleMapper: ~

3.2. Enabling and configuring authorization for embedded caches

When using embedded caches, you can configure authorization with the GlobalSecurityConfigurationBuilder and ConfigurationBuilder classes.

Procedure
  1. Construct a GlobalConfigurationBuilder and enable security authorization with the security().authorization().enable() method.

  2. Specify a role mapper with the principalRoleMapper() method.

  3. If required, define custom role and permission mappings with the role() and permission() methods.

    GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
      global.security().authorization().enable()
              .principalRoleMapper(new ClusterRoleMapper())
              .role("myroleone").permission(AuthorizationPermission.ALL_WRITE)
              .role("myroletwo").permission(AuthorizationPermission.ALL_READ);
  4. Enable authorization for caches in the ConfigurationBuilder.

    • Add all roles from the global configuration.

      ConfigurationBuilder config = new ConfigurationBuilder();
      config.security().authorization().enable();
    • Explicitly define roles for a cache so that Infinispan denies access for users who do not have the role.

      ConfigurationBuilder config = new ConfigurationBuilder();
      config.security().authorization().enable().role("myroleone");

3.3. Adding authorization roles at runtime

Dynamically map roles to permissions when using security authorization with Infinispan caches.

Prerequisites
  • Configure authorization for embedded caches.

  • Have ADMIN permissions for Infinispan.

Procedure
  1. Obtain the RolePermissionMapper instance.

  2. Define new roles with the addRole() method.

    MutableRolePermissionMapper mapper = (MutableRolePermissionMapper) cacheManager.getCacheManagerConfiguration().security().authorization().rolePermissionMapper();
    mapper.addRole(Role.newRole("myroleone", true, AuthorizationPermission.ALL_WRITE, AuthorizationPermission.LISTEN));
    mapper.addRole(Role.newRole("myroletwo", true, AuthorizationPermission.READ, AuthorizationPermission.WRITE));

3.4. Executing code with secure caches

When you construct a DefaultCacheManager for an embedded cache that uses security authorization, the Cache Manager returns a SecureCache that checks the security context before invoking any operations. A SecureCache also ensures that applications cannot retrieve lower-level insecure objects such as DataContainer. For this reason, you must execute code with a Infinispan user that has a role with the appropriate level of permission.

Prerequisites
  • Configure authorization for embedded caches.

Procedure
  1. If necessary, retrieve the current Subject from the Infinispan context or AccessControlContext:

    Security.getSubject();
  2. Wrap method calls in a PrivilegedAction to execute them with the Subject.

    Security.doAs(mySubject, (PrivilegedAction<String>)() -> cache.put("key", "value"));

You can use the Security.doAs() or Subject.doAs() method. Infinispan recommends Security.doAs() for better performance.

3.5. Configuring the access control list (ACL) cache

When you grant or deny roles to users, Infinispan stores details about which users can access your caches internally. This ACL cache improves performance for security authorization by avoiding the need for Infinispan to calculate if users have the appropriate permissions to perform read and write operations for every request.

Whenever you grant or deny roles to users, Infinispan flushes the ACL cache to ensure it applies user permissions correctly. This means that Infinispan must recalculate cache permissions for all users each time you grant or deny roles. For best performance you should not frequently or repeatedly grant and deny roles in production environments.

Procedure
  1. Open your Infinispan configuration for editing.

  2. Specify the maximum number of entries for the ACL cache with the cache-size attribute.

    Entries in the ACL cache have a cardinality of caches * users. You should set the maximum number of entries to a value that can hold information for all your caches and users. For example, the default size of 1000 is appropriate for deployments with up to 100 caches and 10 users.

  3. Set the timeout value, in milliseconds, with the cache-timeout attribute.

    If Infinispan does not access an entry in the ACL cache within the timeout period that entry is evicted. When the user subsequently attempts cache operations then Infinispan recalculates their cache permissions and adds an entry to the ACL cache.

    Specifying a value of 0 for either the cache-size or cache-timeout attribute disables the ACL cache. You should disable the ACL cache only if you disable authorization.

  4. Save the changes to your configuration.

ACL cache configuration

XML
<infinispan>
  <cache-container name="acl-cache-configuration">
    <security cache-size="1000"
              cache-timeout="300000">
      <authorization/>
    </security>
  </cache-container>
</infinispan>
JSON
{
  "infinispan" : {
    "cache-container" : {
      "name" : "acl-cache-configuration",
      "security" : {
        "cache-size" : "1000",
        "cache-timeout" : "300000",
        "authorization" : {}
      }
    }
  }
}
YAML
infinispan:
  cacheContainer:
    name: "acl-cache-configuration"
    security:
      cache-size: "1000"
      cache-timeout: "300000"
      authorization: ~

4. Enabling and configuring Infinispan statistics and JMX monitoring

Infinispan can provide Cache Manager and cache statistics as well as export JMX MBeans.

4.1. Enabling statistics in embedded caches

Configure Infinispan to export statistics for the Cache Manager and embedded caches.

Procedure
  1. Open your Infinispan configuration for editing.

  2. Add the statistics="true" attribute or the .statistics(true) method.

  3. Save and close your Infinispan configuration.

Embedded cache statistics

XML
<infinispan>
  <cache-container statistics="true">
    <distributed-cache statistics="true"/>
    <replicated-cache statistics="true"/>
  </cache-container>
</infinispan>
GlobalConfigurationBuilder
GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder().cacheContainer().statistics(true);
DefaultCacheManager cacheManager = new DefaultCacheManager(global.build());

Configuration builder = new ConfigurationBuilder();
builder.statistics().enable();

4.2. Configuring Infinispan metrics

Infinispan generates metrics that are compatible with any monitoring system.

  • Gauges provide values such as the average number of nanoseconds for write operations or JVM uptime.

  • Histograms provide details about operation execution times such as read, write, and remove times.

By default, Infinispan generates gauges when you enable statistics but you can also configure it to generate histograms.

Infinispan metrics are provided at the vendor scope. Metrics related to the JVM are provided in the base scope.

Prerequisites
  • You must add Micrometer Core and Micrometer Registry Prometheus JARs to your classpath to export Infinispan metrics for embedded caches.

Procedure
  1. Open your Infinispan configuration for editing.

  2. Add the metrics element or object to the cache container.

  3. Enable or disable gauges with the gauges attribute or field.

  4. Enable or disable histograms with the histograms attribute or field.

  5. Save and close your client configuration.

Metrics configuration

XML
<infinispan>
  <cache-container statistics="true">
    <metrics gauges="true"
             histograms="true" />
  </cache-container>
</infinispan>
JSON
{
  "infinispan" : {
    "cache-container" : {
      "statistics" : "true",
      "metrics" : {
        "gauges" : "true",
        "histograms" : "true"
      }
    }
  }
}
YAML
infinispan:
  cacheContainer:
    statistics: "true"
    metrics:
      gauges: "true"
      histograms: "true"
GlobalConfigurationBuilder
GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
  //Computes and collects statistics for the Cache Manager.
  .statistics().enable()
  //Exports collected statistics as gauge and histogram metrics.
  .metrics().gauges(true).histograms(true)
  .build();
Additional resources

4.3. Registering JMX MBeans

Infinispan can register JMX MBeans that you can use to collect statistics and perform administrative operations. You must also enable statistics otherwise Infinispan provides 0 values for all statistic attributes in JMX MBeans.

Procedure
  1. Open your Infinispan configuration for editing.

  2. Add the jmx element or object to the cache container and specify true as the value for the enabled attribute or field.

  3. Add the domain attribute or field and specify the domain where JMX MBeans are exposed, if required.

  4. Save and close your client configuration.

JMX configuration

XML
<infinispan>
  <cache-container statistics="true">
    <jmx enabled="true"
         domain="example.com"/>
  </cache-container>
</infinispan>
JSON
{
  "infinispan" : {
    "cache-container" : {
      "statistics" : "true",
      "jmx" : {
        "enabled" : "true",
        "domain" : "example.com"
      }
    }
  }
}
YAML
infinispan:
  cacheContainer:
    statistics: "true"
    jmx:
      enabled: "true"
      domain: "example.com"
GlobalConfigurationBuilder
GlobalConfiguration global = GlobalConfigurationBuilder.defaultClusteredBuilder()
   .jmx().enable()
   .domain("org.mydomain");

4.3.1. Enabling JMX remote ports

Provide unique remote JMX ports to expose Infinispan MBeans through connections in JMXServiceURL format.

You can enable remote JMX ports using one of the following approaches:

  • Enable remote JMX ports that require authentication to one of the Infinispan Server security realms.

  • Enable remote JMX ports manually using the standard Java management configuration options.

Prerequisites
  • For remote JMX with authentication, define JMX specific user roles using the default security realm. Users must have controlRole with read/write access or the monitorRole with read-only access to access any JMX resources.

Procedure

Start Infinispan Server with a remote JMX port enabled using one of the following ways:

  • Enable remote JMX through port 9999.

    bin/server.sh --jmx 9999

    Using remote JMX with SSL disabled is not intended for production environments.

  • Pass the following system properties to Infinispan Server at startup.

    bin/server.sh -Dcom.sun.management.jmxremote.port=9999 -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false

    Enabling remote JMX with no authentication or SSL is not secure and not recommended in any environment. Disabling authentication and SSL allows unauthorized users to connect to your server and access the data hosted there.

Additional resources

4.3.2. Infinispan MBeans

Infinispan exposes JMX MBeans that represent manageable resources.

org.infinispan:type=Cache

Attributes and operations available for cache instances.

org.infinispan:type=CacheManager

Attributes and operations available for Cache Managers, including Infinispan cache and cluster health statistics.

For a complete list of available JMX MBeans along with descriptions and available operations and attributes, see the Infinispan JMX Components documentation.

Additional resources

4.3.3. Registering MBeans in custom MBean servers

Infinispan includes an MBeanServerLookup interface that you can use to register MBeans in custom MBeanServer instances.

Prerequisites
  • Create an implementation of MBeanServerLookup so that the getMBeanServer() method returns the custom MBeanServer instance.

  • Configure Infinispan to register JMX MBeans.

Procedure
  1. Open your Infinispan configuration for editing.

  2. Add the mbean-server-lookup attribute or field to the JMX configuration for the Cache Manager.

  3. Specify fully qualified name (FQN) of your MBeanServerLookup implementation.

  4. Save and close your client configuration.

JMX MBean server lookup configuration
XML
<infinispan>
  <cache-container statistics="true">
    <jmx enabled="true"
         domain="example.com"
         mbean-server-lookup="com.example.MyMBeanServerLookup"/>
  </cache-container>
</infinispan>
JSON
{
  "infinispan" : {
    "cache-container" : {
      "statistics" : "true",
      "jmx" : {
        "enabled" : "true",
        "domain" : "example.com",
        "mbean-server-lookup" : "com.example.MyMBeanServerLookup"
      }
    }
  }
}
YAML
infinispan:
  cacheContainer:
    statistics: "true"
    jmx:
      enabled: "true"
      domain: "example.com"
      mbeanServerLookup: "com.example.MyMBeanServerLookup"
GlobalConfigurationBuilder
GlobalConfiguration global = GlobalConfigurationBuilder.defaultClusteredBuilder()
   .jmx().enable()
   .domain("org.mydomain")
   .mBeanServerLookup(new com.acme.MyMBeanServerLookup());

4.4. Exporting metrics during a state transfer operation

You can export time metrics for clustered caches that Infinispan redistributes across nodes.

A state transfer operation occurs when a clustered cache topology changes, such as a node joining or leaving a cluster. During a state transfer operation, Infinispan exports metrics from each cache, so that you can determine a cache’s status. A state transfer exposes attributes as properties, so that Infinispan can export metrics from each cache.

You cannot perform a state transfer operation in invalidation mode.

Infinispan generates time metrics that are compatible with the REST API and the JMX API.

Prerequisites
  • Configure Infinispan metrics.

  • Enable metrics for your cache type, such as embedded cache or remote cache.

  • Initiate a state transfer operation by changing your clustered cache topology.

Procedure
  • Choose one of the following methods:

    • Configure Infinispan to use the REST API to collect metrics.

    • Configure Infinispan to use the JMX API to collect metrics.

4.5. Monitoring the status of cross-site replication

Monitor the site status of your backup locations to detect interruptions in the communication between the sites. When a remote site status changes to offline, Infinispan stops replicating your data to the backup location. Your data become out of sync and you must fix the inconsistencies before bringing the clusters back online.

Monitoring cross-site events is necessary for early problem detection. Use one of the following monitoring strategies:

Monitoring cross-site replication with the REST API

Monitor the status of cross-site replication for all caches using the REST endpoint. You can implement a custom script to poll the REST endpoint or use the following example.

Prerequisites
  • Enable cross-site replication.

Procedure
  1. Implement a script to poll the REST endpoint.

    The following example demonstrates how you can use a Python script to poll the site status every five seconds.

#!/usr/bin/python3
import time
import requests
from requests.auth import HTTPDigestAuth


class InfinispanConnection:

    def __init__(self, server: str = 'http://localhost:11222', cache_manager: str = 'default',
                 auth: tuple = ('admin', 'change_me')) -> None:
        super().__init__()
        self.__url = f'{server}/rest/v2/cache-managers/{cache_manager}/x-site/backups/'
        self.__auth = auth
        self.__headers = {
            'accept': 'application/json'
        }

    def get_sites_status(self):
        try:
            rsp = requests.get(self.__url, headers=self.__headers, auth=HTTPDigestAuth(self.__auth[0], self.__auth[1]))
            if rsp.status_code != 200:
                return None
            return rsp.json()
        except:
            return None


# Specify credentials for Infinispan user with permission to access the REST endpoint
USERNAME = 'admin'
PASSWORD = 'change_me'
# Set an interval between cross-site status checks
POLL_INTERVAL_SEC = 5
# Provide a list of servers
SERVERS = [
    InfinispanConnection('http://127.0.0.1:11222', auth=(USERNAME, PASSWORD)),
    InfinispanConnection('http://127.0.0.1:12222', auth=(USERNAME, PASSWORD))
]
#Specify the names of remote sites
REMOTE_SITES = [
    'nyc'
]
#Provide a list of caches to monitor
CACHES = [
    'work',
    'sessions'
]


def on_event(site: str, cache: str, old_status: str, new_status: str):
    # TODO implement your handling code here
    print(f'site={site} cache={cache} Status changed {old_status} -> {new_status}')


def __handle_mixed_state(state: dict, site: str, site_status: dict):
    if site not in state:
        state[site] = {c: 'online' if c in site_status['online'] else 'offline' for c in CACHES}
        return

    for cache in CACHES:
        __update_cache_state(state, site, cache, 'online' if cache in site_status['online'] else 'offline')


def __handle_online_or_offline_state(state: dict, site: str, new_status: str):
    if site not in state:
        state[site] = {c: new_status for c in CACHES}
        return

    for cache in CACHES:
        __update_cache_state(state, site, cache, new_status)


def __update_cache_state(state: dict, site: str, cache: str, new_status: str):
    old_status = state[site].get(cache)
    if old_status != new_status:
        on_event(site, cache, old_status, new_status)
        state[site][cache] = new_status


def update_state(state: dict):
    rsp = None
    for conn in SERVERS:
        rsp = conn.get_sites_status()
        if rsp:
            break
    if rsp is None:
        print('Unable to fetch site status from any server')
        return

    for site in REMOTE_SITES:
        site_status = rsp.get(site, {})
        new_status = site_status.get('status')
        if new_status == 'mixed':
            __handle_mixed_state(state, site, site_status)
        else:
            __handle_online_or_offline_state(state, site, new_status)


if __name__ == '__main__':
    _state = {}
    while True:
        update_state(_state)
        time.sleep(POLL_INTERVAL_SEC)

When a site status changes from online to offline or vice-versa, the function on_event is invoked.

If you want to use this script, you must specify the following variables:

  • USERNAME and PASSWORD: The username and password of Infinispan user with permission to access the REST endpoint.

  • POLL_INTERVAL_SEC: The number of seconds between polls.

  • SERVERS: The list of Infinispan Servers at this site. The script only requires a single valid response but the list is provided to allow fail over.

  • REMOTE_SITES: The list of remote sites to monitor on these servers.

  • CACHES: The list of cache names to monitor.

Monitoring cross-site replication with the Prometheus metrics

Prometheus, and other monitoring systems, let you configure alerts to detect when a site status changes to offline.

Monitoring cross-site latency metrics can help you to discover potential issues.
Prerequisites
  • Enable cross-site replication.

Procedure
  1. Configure Infinispan metrics.

  2. Configure alerting rules using the Prometheus metrics format.

    • For the site status, use 1 for online and 0 for offline.

    • For the expr filed, use the following format:
      vendor_cache_manager_default_cache_<cache name>_x_site_admin_<site name>_status.

      In the following example, Prometheus alerts you when the NYC site gets offline for cache named work or sessions.

      groups:
      - name: Cross Site Rules
        rules:
        - alert: Cache Work and Site NYC
          expr: vendor_cache_manager_default_cache_work_x_site_admin_nyc_status == 0
        - alert: Cache Sessions and Site NYC
          expr: vendor_cache_manager_default_cache_sessions_x_site_admin_nyc_status == 0

      The following image shows an alert that the NYC site is offline for cache work.

      prometheus xsite alert
      Figure 1. Prometheus Alert

5. Setting up Infinispan cluster transport

Infinispan requires a transport layer so nodes can automatically join and leave clusters. The transport layer also enables Infinispan nodes to replicate or distribute data across the network and perform operations such as re-balancing and state transfer.

5.1. Default JGroups stacks

Infinispan provides default JGroups stack files, default-jgroups-*.xml, in the default-configs directory inside the infinispan-core-14.0.33.Final.jar file.

File name Stack name Description

default-jgroups-udp.xml

udp

Uses UDP for transport and UDP multicast for discovery. Suitable for larger clusters (over 100 nodes) or if you are using replicated caches or invalidation mode. Minimizes the number of open sockets.

default-jgroups-tcp.xml

tcp

Uses TCP for transport and the MPING protocol for discovery, which uses UDP multicast. Suitable for smaller clusters (under 100 nodes) only if you are using distributed caches because TCP is more efficient than UDP as a point-to-point protocol.

default-jgroups-kubernetes.xml

kubernetes

Uses TCP for transport and DNS_PING for discovery. Suitable for Kubernetes and Red Hat OpenShift nodes where UDP multicast is not always available.

default-jgroups-ec2.xml

ec2

Uses TCP for transport and aws.S3_PING for discovery. Suitable for Amazon EC2 nodes where UDP multicast is not available. Requires additional dependencies.

default-jgroups-google.xml

google

Uses TCP for transport and GOOGLE_PING2 for discovery. Suitable for Google Cloud Platform nodes where UDP multicast is not available. Requires additional dependencies.

default-jgroups-azure.xml

azure

Uses TCP for transport and AZURE_PING for discovery. Suitable for Microsoft Azure nodes where UDP multicast is not available. Requires additional dependencies.

default-jgroups-tunnel.xml

tunnel

Uses TUNNEL for transport. Suitable for environments where the Infinispan is behind a firewall and direct connection between Infinispan nodes is impossible. It requires an external and accessible service (Gossip Router) to redirect the traffic. It requires jgroups.tunnel.hosts property to be set in the format host1[port],host2[port],…​ with the Gossip Router(s) hosts and ports.

Additional resources

5.2. Cluster discovery protocols

Infinispan supports different protocols that allow nodes to automatically find each other on the network and form clusters.

There are two types of discovery mechanisms that Infinispan can use:

  • Generic discovery protocols that work on most networks and do not rely on external services.

  • Discovery protocols that rely on external services to store and retrieve topology information for Infinispan clusters.
    For instance the DNS_PING protocol performs discovery through DNS server records.

Running Infinispan on hosted platforms requires using discovery mechanisms that are adapted to network constraints that individual cloud providers impose.

Additional resources

5.2.1. PING

PING, or UDPPING is a generic JGroups discovery mechanism that uses dynamic multicasting with the UDP protocol.

When joining, nodes send PING requests to an IP multicast address to discover other nodes already in the Infinispan cluster. Each node responds to the PING request with a packet that contains the address of the coordinator node and its own address. C=coordinator’s address and A=own address. If no nodes respond to the PING request, the joining node becomes the coordinator node in a new cluster.

PING configuration example
<PING num_discovery_runs="3"/>
Additional resources

5.2.2. TCPPING

TCPPING is a generic JGroups discovery mechanism that uses a list of static addresses for cluster members.

With TCPPING, you manually specify the IP address or hostname of each node in the Infinispan cluster as part of the JGroups stack, rather than letting nodes discover each other dynamically.

TCPPING configuration example
<TCP bind_port="7800" />
<TCPPING timeout="3000"
         initial_hosts="${jgroups.tcpping.initial_hosts:hostname1[port1],hostname2[port2]}"
         port_range="0"
         num_initial_members="3"/>
Additional resources

5.2.3. MPING

MPING uses IP multicast to discover the initial membership of Infinispan clusters.

You can use MPING to replace TCPPING discovery with TCP stacks and use multicasing for discovery instead of static lists of initial hosts. However, you can also use MPING with UDP stacks.

MPING configuration example
<MPING mcast_addr="${jgroups.mcast_addr:239.6.7.8}"
       mcast_port="${jgroups.mcast_port:46655}"
       num_discovery_runs="3"
       ip_ttl="${jgroups.udp.ip_ttl:2}"/>
Additional resources

5.2.4. TCPGOSSIP

Gossip routers provide a centralized location on the network from which your Infinispan cluster can retrieve addresses of other nodes.

You inject the address (IP:PORT) of the Gossip router into Infinispan nodes as follows:

  1. Pass the address as a system property to the JVM; for example, -DGossipRouterAddress="10.10.2.4[12001]".

  2. Reference that system property in the JGroups configuration file.

Gossip router configuration example
<TCP bind_port="7800" />
<TCPGOSSIP timeout="3000"
           initial_hosts="${GossipRouterAddress}"
           num_initial_members="3" />
Additional resources

5.2.5. JDBC_PING

JDBC_PING uses shared databases to store information about Infinispan clusters. This protocol supports any database that can use a JDBC connection.

Nodes write their IP addresses to the shared database so joining nodes can find the Infinispan cluster on the network. When nodes leave Infinispan clusters, they delete their IP addresses from the shared database.

JDBC_PING configuration example
<JDBC_PING connection_url="jdbc:mysql://localhost:3306/database_name"
           connection_username="user"
           connection_password="password"
           connection_driver="com.mysql.jdbc.Driver"/>

Add the appropriate JDBC driver to the classpath so Infinispan can use JDBC_PING.

Additional resources

5.2.6. DNS_PING

JGroups DNS_PING queries DNS servers to discover Infinispan cluster members in Kubernetes environments such as OKD and Red Hat OpenShift.

DNS_PING configuration example
<dns.DNS_PING dns_query="myservice.myproject.svc.cluster.local" />
Additional resources

5.2.7. Cloud discovery protocols

Infinispan includes default JGroups stacks that use discovery protocol implementations that are specific to cloud providers.

Discovery protocol Default stack file Artifact Version

aws.S3_PING

default-jgroups-ec2.xml

org.jgroups.aws:jgroups-aws

2.0.1.Final

GOOGLE_PING2

default-jgroups-google.xml

org.jgroups.google:jgroups-google

1.0.0.Final

azure.AZURE_PING

default-jgroups-azure.xml

org.jgroups.azure:jgroups-azure

2.0.0.Final

Providing dependencies for cloud discovery protocols

To use aws.S3_PING, GOOGLE_PING2, or azure.AZURE_PING cloud discovery protocols, you need to provide dependent libraries to Infinispan.

Procedure
  • Add the artifact dependencies to your project pom.xml.

You can then configure the cloud discovery protocol as part of a JGroups stack file or with system properties.

5.3. Using the default JGroups stacks

Infinispan uses JGroups protocol stacks so nodes can send each other messages on dedicated cluster channels.

Infinispan provides preconfigured JGroups stacks for UDP and TCP protocols. You can use these default stacks as a starting point for building custom cluster transport configuration that is optimized for your network requirements.

Procedure

Do one of the following to use one of the default JGroups stacks:

  • Use the stack attribute in your infinispan.xml file.

    <infinispan>
      <cache-container default-cache="replicatedCache">
        <!-- Use the default UDP stack for cluster transport. -->
        <transport cluster="${infinispan.cluster.name}"
                   stack="udp"
                   node-name="${infinispan.node.name:}"/>
      </cache-container>
    </infinispan>
  • Use the addProperty() method to set the JGroups stack file:

    GlobalConfiguration globalConfig = new GlobalConfigurationBuilder().transport()
            .defaultTransport()
            .clusterName("qa-cluster")
            //Uses the default-jgroups-udp.xml stack for cluster transport.
            .addProperty("configurationFile", "default-jgroups-udp.xml")
            .build();
Verification

Infinispan logs the following message to indicate which stack it uses:

[org.infinispan.CLUSTER] ISPN000078: Starting JGroups channel cluster with stack udp

5.4. Customizing JGroups stacks

Adjust and tune properties to create a cluster transport configuration that works for your network requirements.

Infinispan provides attributes that let you extend the default JGroups stacks for easier configuration. You can inherit properties from the default stacks while combining, removing, and replacing other properties.

Procedure
  1. Create a new JGroups stack declaration in your infinispan.xml file.

  2. Add the extends attribute and specify a JGroups stack to inherit properties from.

  3. Use the stack.combine attribute to modify properties for protocols configured in the inherited stack.

  4. Use the stack.position attribute to define the location for your custom stack.

  5. Specify the stack name as the value for the stack attribute in the transport configuration.

    For example, you might evaluate using a Gossip router and symmetric encryption with the default TCP stack as follows:

    <infinispan>
      <jgroups>
        <!-- Creates a custom JGroups stack named "my-stack". -->
        <!-- Inherits properties from the default TCP stack. -->
        <stack name="my-stack" extends="tcp">
          <!-- Uses TCPGOSSIP as the discovery mechanism instead of MPING -->
          <TCPGOSSIP initial_hosts="${jgroups.tunnel.gossip_router_hosts:localhost[12001]}"
                 stack.combine="REPLACE"
                 stack.position="MPING" />
          <!-- Removes the FD_SOCK2 protocol from the stack. -->
          <FD_SOCK2 stack.combine="REMOVE"/>
          <!-- Modifies the timeout value for the VERIFY_SUSPECT2 protocol. -->
          <VERIFY_SUSPECT2 timeout="2000"/>
          <!-- Adds SYM_ENCRYPT to the stack after VERIFY_SUSPECT2. -->
          <SYM_ENCRYPT sym_algorithm="AES"
                       keystore_name="mykeystore.p12"
                       keystore_type="PKCS12"
                       store_password="changeit"
                       key_password="changeit"
                       alias="myKey"
                       stack.combine="INSERT_AFTER"
                       stack.position="VERIFY_SUSPECT2" />
        </stack>
      </jgroups>
      <cache-container name="default" statistics="true">
        <!-- Uses "my-stack" for cluster transport. -->
        <transport cluster="${infinispan.cluster.name}"
                   stack="my-stack"
                   node-name="${infinispan.node.name:}"/>
      </cache-container>
    </infinispan>
  6. Check Infinispan logs to ensure it uses the stack.

    [org.infinispan.CLUSTER] ISPN000078: Starting JGroups channel cluster with stack my-stack

5.4.1. Inheritance attributes

When you extend a JGroups stack, inheritance attributes let you adjust protocols and properties in the stack you are extending.

  • stack.position specifies protocols to modify.

  • stack.combine uses the following values to extend JGroups stacks:

    Value Description

    COMBINE

    Overrides protocol properties.

    REPLACE

    Replaces protocols.

    INSERT_AFTER

    Adds a protocol into the stack after another protocol. Does not affect the protocol that you specify as the insertion point.

    Protocols in JGroups stacks affect each other based on their location in the stack. For example, you should put a protocol such as NAKACK2 after the SYM_ENCRYPT or ASYM_ENCRYPT protocol so that NAKACK2 is secured.

    INSERT_BEFORE

    Inserts a protocols into the stack before another protocol. Affects the protocol that you specify as the insertion point.

    REMOVE

    Removes protocols from the stack.

5.5. Using JGroups system properties

Pass system properties to Infinispan at startup to tune cluster transport.

Procedure
  • Use -D<property-name>=<property-value> arguments to set JGroups system properties as required.

For example, set a custom bind port and IP address as follows:

java -cp ... -Djgroups.bind.port=1234 -Djgroups.bind.address=192.0.2.0

When you embed Infinispan clusters in clustered WildFly applications, JGroups system properties can clash or override each other.

For example, you do not set a unique bind address for either your Infinispan cluster or your WildFly application. In this case both Infinispan and your WildFly application use the JGroups default property and attempt to form clusters using the same bind address.

5.5.1. Cluster transport properties

Use the following properties to customize JGroups cluster transport.

System Property Description Default Value Required/Optional

jgroups.bind.address

Bind address for cluster transport.

SITE_LOCAL

Optional

jgroups.bind.port

Bind port for the socket.

7800

Optional

jgroups.mcast_addr

IP address for multicast, both discovery and inter-cluster communication. The IP address must be a valid "class D" address that is suitable for IP multicast.

239.6.7.8

Optional

jgroups.mcast_port

Port for the multicast socket.

46655

Optional

jgroups.ip_ttl

Time-to-live (TTL) for IP multicast packets. The value defines the number of network hops a packet can make before it is dropped.

2

Optional

jgroups.thread_pool.min_threads

Minimum number of threads for the thread pool.

0

Optional

jgroups.thread_pool.max_threads

Maximum number of threads for the thread pool.

200

Optional

jgroups.join_timeout

Maximum number of milliseconds to wait for join requests to succeed.

2000

Optional

jgroups.thread_dumps_threshold

Number of times a thread pool needs to be full before a thread dump is logged.

10000

Optional

jgroups.fd.port-offset

Offset from jgroups.bind.port port for the FD (failure detection protocol) socket.

50000 (port 57800 )

Optional

jgroups.frag_size

Maximum number of bytes in a message. Messages larger than that are fragmented.

60000

Optional

jgroups.diag.enabled

Enables JGroups diagnostic probing.

false

Optional

5.5.2. System properties for cloud discovery protocols

Use the following properties to configure JGroups discovery protocols for hosted platforms.

Amazon EC2

System properties for configuring aws.S3_PING.

System Property Description Default Value Required/Optional

jgroups.s3.region_name

Name of the Amazon S3 region.

No default value.

Optional

jgroups.s3.bucket_name

Name of the Amazon S3 bucket. The name must exist and be unique.

No default value.

Optional

Google Cloud Platform

System properties for configuring GOOGLE_PING2.

System Property Description Default Value Required/Optional

jgroups.google.bucket_name

Name of the Google Compute Engine bucket. The name must exist and be unique.

No default value.

Required

Azure

System properties for azure.AZURE_PING`.

System Property Description Default Value Required/Optional

jboss.jgroups.azure_ping.storage_account_name

Name of the Azure storage account. The name must exist and be unique.

No default value.

Required

jboss.jgroups.azure_ping.storage_access_key

Name of the Azure storage access key.

No default value.

Required

jboss.jgroups.azure_ping.container

Valid DNS name of the container that stores ping information.

No default value.

Required

Kubernetes

System properties for DNS_PING.

System Property Description Default Value Required/Optional

jgroups.dns.query

Sets the DNS record that returns cluster members.

No default value.

Required

jgroups.dns.record

Sets the DNS record type.

A

Optional

5.6. Using inline JGroups stacks

You can insert complete JGroups stack definitions into infinispan.xml files.

Procedure
  • Embed a custom JGroups stack declaration in your infinispan.xml file.

    <infinispan>
      <!-- Contains one or more JGroups stack definitions. -->
      <jgroups>
        <!-- Defines a custom JGroups stack named "prod". -->
        <stack name="prod">
          <TCP bind_port="7800" port_range="30" recv_buf_size="20000000" send_buf_size="640000"/>
          <RED/>
          <MPING break_on_coord_rsp="true"
                 mcast_addr="${jgroups.mping.mcast_addr:239.2.4.6}"
                 mcast_port="${jgroups.mping.mcast_port:43366}"
                 num_discovery_runs="3"
                 ip_ttl="${jgroups.udp.ip_ttl:2}"/>
          <MERGE3 />
          <FD_SOCK2 />
          <FD_ALL3 timeout="3000" interval="1000" timeout_check_interval="1000" />
          <VERIFY_SUSPECT2 timeout="1000" />
          <pbcast.NAKACK2 use_mcast_xmit="false" xmit_interval="200" xmit_table_num_rows="50"
                          xmit_table_msgs_per_row="1024" xmit_table_max_compaction_time="30000" />
          <UNICAST3 conn_close_timeout="5000" xmit_interval="200" xmit_table_num_rows="50"
                    xmit_table_msgs_per_row="1024" xmit_table_max_compaction_time="30000" />
          <pbcast.STABLE desired_avg_gossip="2000" max_bytes="1M" />
          <pbcast.GMS print_local_addr="false" join_timeout="${jgroups.join_timeout:2000}" />
          <UFC max_credits="4m" min_threshold="0.40" />
          <MFC max_credits="4m" min_threshold="0.40" />
          <FRAG4 />
        </stack>
      </jgroups>
      <cache-container default-cache="replicatedCache">
        <!-- Uses "prod" for cluster transport. -->
        <transport cluster="${infinispan.cluster.name}"
               stack="prod"
               node-name="${infinispan.node.name:}"/>
      </cache-container>
    </infinispan>

5.7. Using external JGroups stacks

Reference external files that define custom JGroups stacks in infinispan.xml files.

Procedure
  1. Put custom JGroups stack files on the application classpath.

    Alternatively you can specify an absolute path when you declare the external stack file.

  2. Reference the external stack file with the stack-file element.

    <infinispan>
      <jgroups>
         <!-- Creates a "prod-tcp" stack that references an external file. -->
         <stack-file name="prod-tcp" path="prod-jgroups-tcp.xml"/>
      </jgroups>
      <cache-container default-cache="replicatedCache">
        <!-- Use the "prod-tcp" stack for cluster transport. -->
        <transport stack="prod-tcp" />
        <replicated-cache name="replicatedCache"/>
      </cache-container>
      <!-- Cache configuration goes here. -->
    </infinispan>

You can also use the addProperty() method in the TransportConfigurationBuilder class to specify a custom JGroups stack file as follows:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder().transport()
        .defaultTransport()
        .clusterName("prod-cluster")
        //Uses a custom JGroups stack for cluster transport.
        .addProperty("configurationFile", "my-jgroups-udp.xml")
        .build();

In this example, my-jgroups-udp.xml references a UDP stack with custom properties such as the following:

Custom UDP stack example
<config xmlns="urn:org:jgroups"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="urn:org:jgroups http://www.jgroups.org/schema/jgroups-5.2.xsd">
    <UDP bind_addr="${jgroups.bind_addr:127.0.0.1}"
         mcast_addr="${jgroups.udp.mcast_addr:239.0.2.0}"
         mcast_port="${jgroups.udp.mcast_port:46655}"
         tos="8"
         ucast_recv_buf_size="20000000"
         ucast_send_buf_size="640000"
         mcast_recv_buf_size="25000000"
         mcast_send_buf_size="640000"
         bundler.max_size="64000"
         ip_ttl="${jgroups.udp.ip_ttl:2}"
         diag.enabled="false"
         thread_naming_pattern="pl"
         thread_pool.enabled="true"
         thread_pool.min_threads="2"
         thread_pool.max_threads="30"
         thread_pool.keep_alive_time="5000" />
    <!-- Other JGroups stack configuration goes here. -->
</config>

5.8. Using custom JChannels

Construct custom JGroups JChannels as in the following example:

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
JChannel jchannel = new JChannel();
// Configure the jchannel as needed.
JGroupsTransport transport = new JGroupsTransport(jchannel);
global.transport().transport(transport);
new DefaultCacheManager(global.build());

Infinispan cannot use custom JChannels that are already connected.

Additional resources

5.9. Encrypting cluster transport

Secure cluster transport so that nodes communicate with encrypted messages. You can also configure Infinispan clusters to perform certificate authentication so that only nodes with valid identities can join.

5.9.1. JGroups encryption protocols

To secure cluster traffic, you can configure Infinispan nodes to encrypt JGroups message payloads with secret keys.

Infinispan nodes can obtain secret keys from either:

  • The coordinator node (asymmetric encryption).

  • A shared keystore (symmetric encryption).

Retrieving secret keys from coordinator nodes

You configure asymmetric encryption by adding the ASYM_ENCRYPT protocol to a JGroups stack in your Infinispan configuration. This allows Infinispan clusters to generate and distribute secret keys.

When using asymmetric encryption, you should also provide keystores so that nodes can perform certificate authentication and securely exchange secret keys. This protects your cluster from man-in-the-middle (MitM) attacks.

Asymmetric encryption secures cluster traffic as follows:

  1. The first node in the Infinispan cluster, the coordinator node, generates a secret key.

  2. A joining node performs certificate authentication with the coordinator to mutually verify identity.

  3. The joining node requests the secret key from the coordinator node. That request includes the public key for the joining node.

  4. The coordinator node encrypts the secret key with the public key and returns it to the joining node.

  5. The joining node decrypts and installs the secret key.

  6. The node joins the cluster, encrypting and decrypting messages with the secret key.

Retrieving secret keys from shared keystores

You configure symmetric encryption by adding the SYM_ENCRYPT protocol to a JGroups stack in your Infinispan configuration. This allows Infinispan clusters to obtain secret keys from keystores that you provide.

  1. Nodes install the secret key from a keystore on the Infinispan classpath at startup.

  2. Node join clusters, encrypting and decrypting messages with the secret key.

Comparison of asymmetric and symmetric encryption

ASYM_ENCRYPT with certificate authentication provides an additional layer of encryption in comparison with SYM_ENCRYPT. You provide keystores that encrypt the requests to coordinator nodes for the secret key. Infinispan automatically generates that secret key and handles cluster traffic, while letting you specify when to generate secret keys. For example, you can configure clusters to generate new secret keys when nodes leave. This ensures that nodes cannot bypass certificate authentication and join with old keys.

SYM_ENCRYPT, on the other hand, is faster than ASYM_ENCRYPT because nodes do not need to exchange keys with the cluster coordinator. A potential drawback to SYM_ENCRYPT is that there is no configuration to automatically generate new secret keys when cluster membership changes. Users are responsible for generating and distributing the secret keys that nodes use to encrypt cluster traffic.

5.9.2. Securing cluster transport with asymmetric encryption

Configure Infinispan clusters to generate and distribute secret keys that encrypt JGroups messages.

Procedure
  1. Create a keystore with certificate chains that enables Infinispan to verify node identity.

  2. Place the keystore on the classpath for each node in the cluster.

    For Infinispan Server, you put the keystore in the $ISPN_HOME directory.

  3. Add the SSL_KEY_EXCHANGE and ASYM_ENCRYPT protocols to a JGroups stack in your Infinispan configuration, as in the following example:

    <infinispan>
      <jgroups>
        <!-- Creates a secure JGroups stack named "encrypt-tcp" that extends the default TCP stack. -->
        <stack name="encrypt-tcp" extends="tcp">
          <!-- Adds a keystore that nodes use to perform certificate authentication. -->
          <!-- Uses the stack.combine and stack.position attributes to insert SSL_KEY_EXCHANGE into the default TCP stack after VERIFY_SUSPECT2. -->
          <SSL_KEY_EXCHANGE keystore_name="mykeystore.jks"
                            keystore_password="changeit"
                            stack.combine="INSERT_AFTER"
                            stack.position="VERIFY_SUSPECT2"/>
          <!-- Configures ASYM_ENCRYPT -->
          <!-- Uses the stack.combine and stack.position attributes to insert ASYM_ENCRYPT into the default TCP stack before pbcast.NAKACK2. -->
          <!-- The use_external_key_exchange = "true" attribute configures nodes to use the `SSL_KEY_EXCHANGE` protocol for certificate authentication. -->
          <ASYM_ENCRYPT asym_keylength="2048"
                        asym_algorithm="RSA"
                        change_key_on_coord_leave = "false"
                        change_key_on_leave = "false"
                        use_external_key_exchange = "true"
                        stack.combine="INSERT_BEFORE"
                        stack.position="pbcast.NAKACK2"/>
        </stack>
      </jgroups>
      <cache-container name="default" statistics="true">
        <!-- Configures the cluster to use the JGroups stack. -->
        <transport cluster="${infinispan.cluster.name}"
                   stack="encrypt-tcp"
                   node-name="${infinispan.node.name:}"/>
      </cache-container>
    </infinispan>
Verification

When you start your Infinispan cluster, the following log message indicates that the cluster is using the secure JGroups stack:

[org.infinispan.CLUSTER] ISPN000078: Starting JGroups channel cluster with stack <encrypted_stack_name>

Infinispan nodes can join the cluster only if they use ASYM_ENCRYPT and can obtain the secret key from the coordinator node. Otherwise the following message is written to Infinispan logs:

[org.jgroups.protocols.ASYM_ENCRYPT] <hostname>: received message without encrypt header from <hostname>; dropping it
Additional resources

5.9.3. Securing cluster transport with symmetric encryption

Configure Infinispan clusters to encrypt JGroups messages with secret keys from keystores that you provide.

Procedure
  1. Create a keystore that contains a secret key.

  2. Place the keystore on the classpath for each node in the cluster.

    For Infinispan Server, you put the keystore in the $ISPN_HOME directory.

  3. Add the SYM_ENCRYPT protocol to a JGroups stack in your Infinispan configuration.

<infinispan>
  <jgroups>
    <!-- Creates a secure JGroups stack named "encrypt-tcp" that extends the default TCP stack. -->
    <stack name="encrypt-tcp" extends="tcp">
      <!-- Adds a keystore from which nodes obtain secret keys. -->
      <!-- Uses the stack.combine and stack.position attributes to insert SYM_ENCRYPT into the default TCP stack after VERIFY_SUSPECT2. -->
      <SYM_ENCRYPT keystore_name="myKeystore.p12"
                   keystore_type="PKCS12"
                   store_password="changeit"
                   key_password="changeit"
                   alias="myKey"
                   stack.combine="INSERT_AFTER"
                   stack.position="VERIFY_SUSPECT2"/>
    </stack>
  </jgroups>
  <cache-container name="default" statistics="true">
    <!-- Configures the cluster to use the JGroups stack. -->
    <transport cluster="${infinispan.cluster.name}"
               stack="encrypt-tcp"
               node-name="${infinispan.node.name:}"/>
  </cache-container>
</infinispan>
Verification

When you start your Infinispan cluster, the following log message indicates that the cluster is using the secure JGroups stack:

[org.infinispan.CLUSTER] ISPN000078: Starting JGroups channel cluster with stack <encrypted_stack_name>

Infinispan nodes can join the cluster only if they use SYM_ENCRYPT and can obtain the secret key from the shared keystore. Otherwise the following message is written to Infinispan logs:

[org.jgroups.protocols.SYM_ENCRYPT] <hostname>: received message without encrypt header from <hostname>; dropping it
Additional resources

5.10. TCP and UDP ports for cluster traffic

Infinispan uses the following ports for cluster transport messages:

Default Port Protocol Description

7800

TCP/UDP

JGroups cluster bind port

46655

UDP

JGroups multicast

Cross-site replication

Infinispan uses the following ports for the JGroups RELAY2 protocol:

7900

For Infinispan clusters running on Kubernetes.

7800

If using UDP for traffic between nodes and TCP for traffic between clusters.

7801

If using TCP for traffic between nodes and TCP for traffic between clusters.

6. Clustered Locks

Clustered locks are data structures that are distributed and shared across nodes in a Infinispan cluster. Clustered locks allow you to run code that is synchronized between nodes.

6.1. Lock API

Infinispan provides a ClusteredLock API that lets you concurrently execute code on a cluster when using Infinispan in embedded mode.

The API consists of the following:

  • ClusteredLock exposes methods to implement clustered locks.

  • ClusteredLockManager exposes methods to define, configure, retrieve, and remove clustered locks.

  • EmbeddedClusteredLockManagerFactory initializes ClusteredLockManager implementations.

Ownership

Infinispan supports NODE ownership so that all nodes in a cluster can use a lock.

Reentrancy

Infinispan clustered locks are non-reentrant so any node in the cluster can acquire a lock but only the node that creates the lock can release it.

If two consecutive lock calls are sent for the same owner, the first call acquires the lock if it is available and the second call is blocked.

6.2. Using Clustered Locks

Learn how to use clustered locks with Infinispan embedded in your application.

Prerequisites
  • Add the infinispan-clustered-lock dependency to your pom.xml:

<dependency>
   <groupId>org.infinispan</groupId>
   <artifactId>infinispan-clustered-lock</artifactId>
</dependency>
Procedure
  1. Initialize the ClusteredLockManager interface from a Cache Manager. This interface is the entry point for defining, retrieving, and removing clustered locks.

  2. Give a unique name for each clustered lock.

  3. Acquire locks with the lock.tryLock(1, TimeUnit.SECONDS) method.

// Set up a clustered Cache Manager.
GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder();

// Configure the cache mode, in this case it is distributed and synchronous.
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.clustering().cacheMode(CacheMode.DIST_SYNC);

// Initialize a new default Cache Manager.
DefaultCacheManager cm = new DefaultCacheManager(global.build(), builder.build());

// Initialize a Clustered Lock Manager.
ClusteredLockManager clm1 = EmbeddedClusteredLockManagerFactory.from(cm);

// Define a clustered lock named 'lock'.
clm1.defineLock("lock");

// Get a lock from each node in the cluster.
ClusteredLock lock = clm1.get("lock");

AtomicInteger counter = new AtomicInteger(0);

// Acquire the lock as follows.
// Each 'lock.tryLock(1, TimeUnit.SECONDS)' method attempts to acquire the lock.
// If the lock is not available, the method waits for the timeout period to elapse. When the lock is acquired, other calls to acquire the lock are blocked until the lock is released.
CompletableFuture<Boolean> call1 = lock.tryLock(1, TimeUnit.SECONDS).whenComplete((r, ex) -> {
    if (r) {
        System.out.println("lock is acquired by the call 1");
        lock.unlock().whenComplete((nil, ex2) -> {
            System.out.println("lock is released by the call 1");
            counter.incrementAndGet();
        });
    }
});

CompletableFuture<Boolean> call2 = lock.tryLock(1, TimeUnit.SECONDS).whenComplete((r, ex) -> {
    if (r) {
        System.out.println("lock is acquired by the call 2");
        lock.unlock().whenComplete((nil, ex2) -> {
            System.out.println("lock is released by the call 2");
            counter.incrementAndGet();
        });
    }
});

CompletableFuture<Boolean> call3 = lock.tryLock(1, TimeUnit.SECONDS).whenComplete((r, ex) -> {
    if (r) {
        System.out.println("lock is acquired by the call 3");
        lock.unlock().whenComplete((nil, ex2) -> {
            System.out.println("lock is released by the call 3");
            counter.incrementAndGet();
        });
    }
});

CompletableFuture.allOf(call1, call2, call3).whenComplete((r, ex) -> {
    // Print the value of the counter.
    System.out.println("Value of the counter is " + counter.get());

    // Stop the Cache Manager.
    cm.stop();
});

6.3. Configuring Internal Caches for Locks

Clustered Lock Managers include an internal cache that stores lock state. You can configure the internal cache either declaratively or programmatically.

Procedure
  1. Define the number of nodes in the cluster that store the state of clustered locks. The default value is -1, which replicates the value to all nodes.

  2. Specify one of the following values for the cache reliability, which controls how clustered locks behave when clusters split into partitions or multiple nodes leave:

    • AVAILABLE: Nodes in any partition can concurrently operate on locks.

    • CONSISTENT: Only nodes that belong to the majority partition can operate on locks. This is the default value.

    • Programmatic configuration

      import org.infinispan.lock.configuration.ClusteredLockManagerConfiguration;
      import org.infinispan.lock.configuration.ClusteredLockManagerConfigurationBuilder;
      import org.infinispan.lock.configuration.Reliability;
      ...
      
      GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder();
      
      final ClusteredLockManagerConfiguration config = global.addModule(ClusteredLockManagerConfigurationBuilder.class).numOwner(2).reliability(Reliability.AVAILABLE).create();
      
      DefaultCacheManager cm = new DefaultCacheManager(global.build());
      
      ClusteredLockManager clm1 = EmbeddedClusteredLockManagerFactory.from(cm);
      
      clm1.defineLock("lock");
    • Declarative configuration

      <infinispan
              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
              xsi:schemaLocation="urn:infinispan:config:14.0 https://infinispan.org/schemas/infinispan-config-14.0.xsd"
              xmlns="urn:infinispan:config:14.0">
      
          <cache-container default-cache="default">
              <transport/>
              <local-cache name="default">
                  <locking concurrency-level="100" acquire-timeout="1000"/>
              </local-cache>
              <clustered-locks xmlns="urn:infinispan:config:clustered-locks:14.0"
                               num-owners = "3"
                               reliability="AVAILABLE">
                  <clustered-lock name="lock1" />
                  <clustered-lock name="lock2" />
              </clustered-locks>
          </cache-container>
          <!-- Cache configuration goes here. -->
      </infinispan>

7. Executing code in the grid

The main benefit of a cache is the ability to very quickly lookup a value by its key, even across machines. In fact this use alone is probably the reason many users use Infinispan. However Infinispan can provide many more benefits that aren’t immediately apparent. Since Infinispan is usually used in a cluster of machines we also have features available that can help utilize the entire cluster for performing the user’s desired workload.

7.1. Cluster Executor

Since you have a group of machines, it makes sense to leverage their combined computing power for executing code on all of them them. The Cache Manager comes with a nice utility that allows you to execute arbitrary code in the cluster. Note this feature requires no Cache to be used. This Cluster Executor can be retrieved by calling executor() on the EmbeddedCacheManager. This executor is retrievable in both clustered and non clustered configurations.

The ClusterExecutor is specifically designed for executing code where the code is not reliant upon the data in a cache and is used instead as a way to help users to execute code easily in the cluster.

This manager was built specifically using Java 8 and such has functional APIs in mind, thus all methods take a functional interface as an argument. Also since these arguments will be sent to other nodes they need to be serializable. We even used a nice trick to ensure our lambdas are immediately Serializable. That is by having the arguments implement both Serializable and the real argument type (ie. Runnable or Function). The JRE will pick the most specific class when determining which method to invoke, so in that case your lambdas will always be serializable. It is also possible to use an Externalizer to possibly reduce message size further.

The manager by default will submit a given command to all nodes in the cluster including the node where it was submitted from. You can control on which nodes the task is executed on by using the filterTargets methods as is explained in the section.

7.1.1. Filtering execution nodes

It is possible to limit on which nodes the command will be ran. For example you may want to only run a computation on machines in the same rack. Or you may want to perform an operation once in the local site and again on a different site. A cluster executor can limit what nodes it sends requests to at the scope of same or different machine, rack or site level.

SameRack.java
EmbeddedCacheManager manager = ...;
manager.executor().filterTargets(ClusterExecutionPolicy.SAME_RACK).submit(...)

To use this topology base filtering you must enable topology aware consistent hashing through Server Hinting.

You can also filter using a predicate based on the Address of the node. This can also be optionally combined with topology based filtering in the previous code snippet.

We also allow the target node to be chosen by any means using a Predicate that will filter out which nodes can be considered for execution. Note this can also be combined with Topology filtering at the same time to allow even more fine control of where you code is executed within the cluster.

Predicate.java
EmbeddedCacheManager manager = ...;
// Just filter
manager.executor().filterTargets(a -> a.equals(..)).submit(...)
// Filter only those in the desired topology
manager.executor().filterTargets(ClusterExecutionPolicy.SAME_SITE, a -> a.equals(..)).submit(...)

7.1.2. Timeout

Cluster Executor allows for a timeout to be set per invocation. This defaults to the distributed sync timeout as configured on the Transport Configuration. This timeout works in both a clustered and non clustered Cache Manager. The executor may or may not interrupt the threads executing a task when the timeout expires. However when the timeout occurs any Consumer or Future will be completed passing back a TimeoutException. This value can be overridden by ivoking the timeout method and supplying the desired duration.

7.1.3. Single Node Submission

Cluster Executor can also run in single node submission mode instead of submitting the command to all nodes it will instead pick one of the nodes that would have normally received the command and instead submit it it to only one. Each submission will possibly use a different node to execute the task on. This can be very useful to use the ClusterExecutor as a java.util.concurrent.Executor which you may have noticed that ClusterExecutor implements.

SingleNode.java
EmbeddedCacheManager manager = ...;
manager.executor().singleNodeSubmission().submit(...)
Failover

When running in single node submission it may be desirable to also allow the Cluster Executor handle cases where an exception occurred during the processing of a given command by retrying the command again. When this occurs the Cluster Executor will choose a single node again to resubmit the command to up to the desired number of failover attempts. Note the chosen node could be any node that passes the topology or predicate check. Failover is enabled by invoking the overridden singleNodeSubmission method. The given command will be resubmitted again to a single node until either the command completes without exception or the total submission amount is equal to the provided failover count.

7.1.4. Example: PI Approximation

This example shows how you can use the ClusterExecutor to estimate the value of PI.

Pi approximation can greatly benefit from parallel distributed execution via Cluster Executor. Recall that area of the square is Sa = 4r2 and area of the circle is Ca=pi*r2. Substituting r2 from the second equation into the first one it turns out that pi = 4 * Ca/Sa. Now, image that we can shoot very large number of darts into a square; if we take ratio of darts that land inside a circle over a total number of darts shot we will approximate Ca/Sa value. Since we know that pi = 4 * Ca/Sa we can easily derive approximate value of pi. The more darts we shoot the better approximation we get. In the example below we shoot 1 billion darts but instead of "shooting" them serially we parallelize work of dart shooting across the entire Infinispan cluster. Note this will work in a cluster of 1 was well, but will be slower.

public class PiAppx {

   public static void main (String [] arg){
      EmbeddedCacheManager cacheManager = ..
      boolean isCluster = ..

      int numPoints = 1_000_000_000;
      int numServers = isCluster ? cacheManager.getMembers().size() : 1;
      int numberPerWorker = numPoints / numServers;

      ClusterExecutor clusterExecutor = cacheManager.executor();
      long start = System.currentTimeMillis();
      // We receive results concurrently - need to handle that
      AtomicLong countCircle = new AtomicLong();
      CompletableFuture<Void> fut = clusterExecutor.submitConsumer(m -> {
         int insideCircleCount = 0;
         for (int i = 0; i < numberPerWorker; i++) {
            double x = Math.random();
            double y = Math.random();
            if (insideCircle(x, y))
               insideCircleCount++;
         }
         return insideCircleCount;
      }, (address, count, throwable) -> {
         if (throwable != null) {
            throwable.printStackTrace();
            System.out.println("Address: " + address + " encountered an error: " + throwable);
         } else {
            countCircle.getAndAdd(count);
         }
      });
      fut.whenComplete((v, t) -> {
         // This is invoked after all nodes have responded with a value or exception
         if (t != null) {
            t.printStackTrace();
            System.out.println("Exception encountered while waiting:" + t);
         } else {
            double appxPi = 4.0 * countCircle.get() / numPoints;

            System.out.println("Distributed PI appx is " + appxPi +
                  " using " + numServers + " node(s), completed in " + (System.currentTimeMillis() - start) + " ms");
         }
      });

      // May have to sleep here to keep alive if no user threads left
   }

   private static boolean insideCircle(double x, double y) {
      return (Math.pow(x - 0.5, 2) + Math.pow(y - 0.5, 2))
            <= Math.pow(0.5, 2);
   }
}

8. Using the Streams API for code execution

Efficiently process data stored in Infinispan caches using the Streams API.

9. Streams

You may want to process a subset or all data in the cache to produce a result. This may bring thoughts of Map Reduce. Infinispan allows the user to do something very similar but utilizes the standard JRE APIs to do so. Java 8 introduced the concept of a Stream which allows functional-style operations on collections rather than having to procedurally iterate over the data yourself. Stream operations can be implemented in a fashion very similar to MapReduce. Streams, just like MapReduce allow you to perform processing upon the entirety of your cache, possibly a very large data set, but in an efficient way.

Streams are the preferred method when dealing with data that exists in the cache because streams automatically adjust to cluster topology changes.

Also since we can control how the entries are iterated upon we can more efficiently perform the operations in a cache that is distributed if you want it to perform all of the operations across the cluster concurrently.

A stream is retrieved from the entrySet, keySet or values collections returned from the Cache by invoking the stream or parallelStream methods.

9.1. Common stream operations

This section highlights various options that are present irrespective of what type of underlying cache you are using.

9.2. Key filtering

It is possible to filter the stream so that it only operates upon a given subset of keys. This can be done by invoking the filterKeys method on the CacheStream. This should always be used over a Predicate filter and will be faster if the predicate was holding all keys.

If you are familiar with the AdvancedCache interface you may be wondering why you even use getAll over this keyFilter. There are some small benefits (mostly smaller payloads) to using getAll if you need the entries as is and need them all in memory in the local node. However if you need to do processing on these elements a stream is recommended since you will get both distributed and threaded parallelism for free.

9.3. Segment based filtering

This is an advanced feature and should only be used with deep knowledge of Infinispan segment and hashing techniques. These segments based filtering can be useful if you need to segment data into separate invocations. This can be useful when integrating with other tools such as Apache Spark.

This option is only supported for replicated and distributed caches. This allows the user to operate upon a subset of data at a time as determined by the KeyPartitioner. The segments can be filtered by invoking filterKeySegments method on the CacheStream. This is applied after the key filter but before any intermediate operations are performed.

9.4. Local/Invalidation

A stream used with a local or invalidation cache can be used just the same way you would use a stream on a regular collection. Infinispan handles all of the translations if necessary behind the scenes and works with all of the more interesting options (ie. storeAsBinary and a cache loader). Only data local to the node where the stream operation is performed will be used, for example invalidation only uses local entries.

9.5. Example

The code below takes a cache and returns a map with all the cache entries whose values contain the string "JBoss"

Map<Object, String> jbossValues =
cache.entrySet().stream()
     .filter(e -> e.getValue().contains("JBoss"))
     .collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

9.6. Distribution/Replication/Scattered

This is where streams come into their stride. When a stream operation is performed it will send the various intermediate and terminal operations to each node that has pertinent data. This allows processing the intermediate values on the nodes owning the data, and only sending the final results back to the originating nodes, improving performance.

9.6.1. Rehash Aware

Internally the data is segmented and each node only performs the operations upon the data it owns as a primary owner. This allows for data to be processed evenly, assuming segments are granular enough to provide for equal amounts of data on each node.

When you are utilizing a distributed cache, the data can be reshuffled between nodes when a new node joins or leaves. Distributed Streams handle this reshuffling of data automatically so you don’t have to worry about monitoring when nodes leave or join the cluster. Reshuffled entries may be processed a second time, and we keep track of the processed entries at the key level or at the segment level (depending on the terminal operation) to limit the amount of duplicate processing.

It is possible but highly discouraged to disable rehash awareness on the stream. This should only be considered if your request can handle only seeing a subset of data if a rehash occurs. This can be done by invoking CacheStream.disableRehashAware() The performance gain for most operations when a rehash doesn’t occur is completely negligible. The only exceptions are for iterator and forEach, which will use less memory, since they do not have to keep track of processed keys.

Please rethink disabling rehash awareness unless you really know what you are doing.

9.6.2. Serialization

Since the operations are sent across to other nodes they must be serializable by Infinispan marshalling. This allows the operations to be sent to the other nodes.

The simplest way is to use a CacheStream instance and use a lambda just as you would normally. Infinispan overrides all of the various Stream intermediate and terminal methods to take Serializable versions of the arguments (ie. SerializableFunction, SerializablePredicate…​) You can find these methods at CacheStream. This relies on the spec to pick the most specific method as defined here.

In our previous example we used a Collector to collect all the results into a Map. Unfortunately the Collectors class doesn’t produce Serializable instances. Thus if you need to use these, there are two ways to do so:

One option would be to use the CacheCollectors class which allows for a Supplier<Collector> to be provided. This instance could then use the Collectors to supply a Collector which is not serialized.

Map<Object, String> jbossValues = cache.entrySet().stream()
              .filter(e -> e.getValue().contains("Jboss"))
              .collect(CacheCollectors.serializableCollector(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue)));

Alternatively, you can avoid the use of CacheCollectors and instead use the overloaded collect methods that take Supplier<Collector>. These overloaded collect methods are only available via CacheStream interface.

Map<Object, String> jbossValues = cache.entrySet().stream()
              .filter(e -> e.getValue().contains("Jboss"))
              .collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

If however you are not able to use the Cache and CacheStream interfaces you cannot utilize Serializable arguments and you must instead cast the lambdas to be Serializable manually by casting the lambda to multiple interfaces. It is not a pretty sight but it gets the job done.

Map<Object, String> jbossValues = map.entrySet().stream()
              .filter((Serializable & Predicate<Map.Entry<Object, String>>) e -> e.getValue().contains("Jboss"))
              .collect(CacheCollectors.serializableCollector(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue)));

The recommended and most performant way is to use an AdvancedExternalizer as this provides the smallest payload. Unfortunately this means you cannot use lamdbas as advanced externalizers require defining the class before hand.

You can use an advanced externalizer as shown below:

   Map<Object, String> jbossValues = cache.entrySet().stream()
              .filter(new ContainsFilter("Jboss"))
              .collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

   class ContainsFilter implements Predicate<Map.Entry<Object, String>> {
      private final String target;

      ContainsFilter(String target) {
         this.target = target;
      }

      @Override
      public boolean test(Map.Entry<Object, String> e) {
         return e.getValue().contains(target);
      }
   }

   class JbossFilterExternalizer implements AdvancedExternalizer<ContainsFilter> {

      @Override
      public Set<Class<? extends ContainsFilter>> getTypeClasses() {
         return Util.asSet(ContainsFilter.class);
      }

      @Override
      public Integer getId() {
         return CUSTOM_ID;
      }

      @Override
      public void writeObject(ObjectOutput output, ContainsFilter object) throws IOException {
         output.writeUTF(object.target);
      }

      @Override
      public ContainsFilter readObject(ObjectInput input) throws IOException, ClassNotFoundException {
         return new ContainsFilter(input.readUTF());
      }
   }

You could also use an advanced externalizer for the collector supplier to reduce the payload size even further.

Map<Object, String> map = (Map<Object, String>) cache.entrySet().stream()
              .filter(new ContainsFilter("Jboss"))
              .collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

 class ToMapCollectorSupplier<K, U> implements Supplier<Collector<Map.Entry<K, U>, ?, Map<K, U>>> {
      static final ToMapCollectorSupplier INSTANCE = new ToMapCollectorSupplier();

      private ToMapCollectorSupplier() { }

      @Override
      public Collector<Map.Entry<K, U>, ?, Map<K, U>> get() {
         return Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue);
      }
   }

   class ToMapCollectorSupplierExternalizer implements AdvancedExternalizer<ToMapCollectorSupplier> {

      @Override
      public Set<Class<? extends ToMapCollectorSupplier>> getTypeClasses() {
         return Util.asSet(ToMapCollectorSupplier.class);
      }

      @Override
      public Integer getId() {
         return CUSTOM_ID;
      }

      @Override
      public void writeObject(ObjectOutput output, ToMapCollectorSupplier object) throws IOException {
      }

      @Override
      public ToMapCollectorSupplier readObject(ObjectInput input) throws IOException, ClassNotFoundException {
         return ToMapCollectorSupplier.INSTANCE;
      }
   }

9.7. Parallel Computation

Distributed streams by default try to parallelize as much as possible. It is possible for the end user to control this and actually they always have to control one of the options. There are 2 ways these streams are parallelized.

Local to each node When a stream is created from the cache collection the end user can choose between invoking stream or parallelStream method. Depending on if the parallel stream was picked will enable multiple threading for each node locally. Note that some operations like a rehash aware iterator and forEach operations will always use a sequential stream locally. This could be enhanced at some point to allow for parallel streams locally.

Users should be careful when using local parallelism as it requires having a large number of entries or operations that are computationally expensive to be faster. Also it should be noted that if a user uses a parallel stream with forEach that the action should not block as this would be executed on the common pool, which is normally reserved for computation operations.

Remote requests When there are multiple nodes it may be desirable to control whether the remote requests are all processed at the same time concurrently or one at a time. By default all terminal operations except the iterator perform concurrent requests. The iterator, method to reduce overall memory pressure on the local node, only performs sequential requests which actually performs slightly better.

If a user wishes to change this default however they can do so by invoking the sequentialDistribution or parallelDistribution methods on the CacheStream.

9.8. Task timeout

It is possible to set a timeout value for the operation requests. This timeout is used only for remote requests timing out and it is on a per request basis. The former means the local execution will not timeout and the latter means if you have a failover scenario as described above the subsequent requests each have a new timeout. If no timeout is specified it uses the replication timeout as a default timeout. You can set the timeout in your task by doing the following:

CacheStream<Map.Entry<Object, String>> stream = cache.entrySet().stream();
stream.timeout(1, TimeUnit.MINUTES);

For more information about this, please check the java doc in timeout javadoc.

9.9. Injection

The Stream has a terminal operation called forEach which allows for running some sort of side effect operation on the data. In this case it may be desirable to get a reference to the Cache that is backing this Stream. If your Consumer implements the CacheAware interface the injectCache method be invoked before the accept method from the Consumer interface.

9.10. Distributed Stream execution

Distributed streams execution works in a fashion very similar to map reduce. Except in this case we are sending zero to many intermediate operations (map, filter etc.) and a single terminal operation to the various nodes. The operation basically comes down to the following:

  1. The desired segments are grouped by which node is the primary owner of the given segment

  2. A request is generated to send to each remote node that contains the intermediate and terminal operations including which segments it should process

    1. The terminal operation will be performed locally if necessary

    2. Each remote node will receive this request and run the operations and subsequently send the response back

  3. The local node will then gather the local response and remote responses together performing any kind of reduction required by the operations themselves.

  4. Final reduced response is then returned to the user

In most cases all operations are fully distributed, as in the operations are all fully applied on each remote node and usually only the last operation or something related may be reapplied to reduce the results from multiple nodes. One important note is that intermediate values do not actually have to be serializable, it is the last value sent back that is the part desired (exceptions for various operations will be highlighted below).

Terminal operator distributed result reductions The following paragraphs describe how the distributed reductions work for the various terminal operators. Some of these are special in that an intermediate value may be required to be serializable instead of the final result.

allMatch noneMatch anyMatch

The allMatch operation is ran on each node and then all the results are logically anded together locally to get the appropriate value. The noneMatch and anyMatch operations use a logical or instead. These methods also have early termination support, stopping remote and local operations once the final result is known.

collect

The collect method is interesting in that it can do a few extra steps. The remote node performs everything as normal except it doesn’t perform the final finisher upon the result and instead sends back the fully combined results. The local thread then combines the remote and local result into a value which is then finally finished. The key here to remember is that the final value doesn’t have to be serializable but rather the values produced from the supplier and combiner methods.

count

The count method just adds the numbers together from each node.

findAny findFirst

The findAny operation returns just the first value they find, whether it was from a remote node or locally. Note this supports early termination in that once a value is found it will not process others. Note the findFirst method is special since it requires a sorted intermediate operation, which is detailed in the exceptions section.

max min

The max and min methods find the respective min or max value on each node then a final reduction is performed locally to ensure only the min or max across all nodes is returned.

reduce

The various reduce methods 1 , 2 , 3 will end up serializing the result as much as the accumulator can do. Then it will accumulate the local and remote results together locally, before combining if you have provided that. Note this means a value coming from the combiner doesn’t have to be Serializable.

9.11. Key based rehash aware operators

The iterator, spliterator and forEach are unlike the other terminal operators in that the rehash awareness has to keep track of what keys per segment have been processed instead of just segments. This is to guarantee an exactly once (iterator & spliterator) or at least once behavior (forEach) even under cluster membership changes.

The iterator and spliterator operators when invoked on a remote node will return back batches of entries, where the next batch is only sent back after the last has been fully consumed. This batching is done to limit how many entries are in memory at a given time. The user node will hold onto which keys it has processed and when a given segment is completed it will release those keys from memory. This is why sequential processing is preferred for the iterator method, so only a subset of segment keys are held in memory at once, instead of from all nodes.

The forEach() method also returns batches, but it returns a batch of keys after it has finished processing at least a batch worth of keys. This way the originating node can know what keys have been processed already to reduce chances of processing the same entry again. Unfortunately this means it is possible to have an at least once behavior when a node goes down unexpectedly. In this case that node could have been processing a batch and not yet completed one and those entries that were processed but not in a completed batch will be ran again when the rehash failure operation occurs. Note that adding a node will not cause this issue as the rehash failover doesn’t occur until all responses are received.

These operations batch sizes are both controlled by the same value which can be configured by invoking distributedBatchSize method on the CacheStream. This value will default to the chunkSize configured in state transfer. Unfortunately this value is a tradeoff with memory usage vs performance vs at least once and your mileage may vary.

Using iterator with replicated and distributed caches

When a node is the primary or backup owner of all requested segments for a distributed stream, Infinispan performs the iterator or spliterator terminal operations locally, which optimizes performance as remote iterations are more resource intensive.

This optimization applies to both replicated and distributed caches. However, Infinispan performs iterations remotely when using cache stores that are both shared and have write-behind enabled. In this case performing the iterations remotely ensures consistency.

9.12. Intermediate operation exceptions

There are some intermediate operations that have special exceptions, these are skip, peek, sorted 1 2. & distinct. All of these methods have some sort of artificial iterator implanted in the stream processing to guarantee correctness, they are documented as below. Note this means these operations may cause possibly severe performance degradation.

Skip

An artificial iterator is implanted up to the intermediate skip operation. Then results are brought locally so it can skip the appropriate amount of elements.

Sorted

WARNING: This operation requires having all entries in memory on the local node. An artificial iterator is implanted up to the intermediate sorted operation. All results are sorted locally. There are possible plans to have a distributed sort which returns batches of elements, but this is not yet implemented.

Distinct

WARNING: This operation requires having all or nearly all entries in memory on the local node. Distinct is performed on each remote node and then an artificial iterator returns those distinct values. Then finally all of those results have a distinct operation performed upon them.

The rest of the intermediate operations are fully distributed as one would expect.

9.13. Examples

Word Count

Word count is a classic, if overused, example of map/reduce paradigm. Assume we have a mapping of key → sentence stored on Infinispan nodes. Key is a String, each sentence is also a String, and we have to count occurrence of all words in all sentences available. The implementation of such a distributed task could be defined as follows:

public class WordCountExample {

   /**
    * In this example replace c1 and c2 with
    * real Cache references
    *
    * @param args
    */
   public static void main(String[] args) {
      Cache<String, String> c1 = ...;
      Cache<String, String> c2 = ...;

      c1.put("1", "Hello world here I am");
      c2.put("2", "Infinispan rules the world");
      c1.put("3", "JUDCon is in Boston");
      c2.put("4", "JBoss World is in Boston as well");
      c1.put("12","JBoss Application Server");
      c2.put("15", "Hello world");
      c1.put("14", "Infinispan community");
      c2.put("15", "Hello world");

      c1.put("111", "Infinispan open source");
      c2.put("112", "Boston is close to Toronto");
      c1.put("113", "Toronto is a capital of Ontario");
      c2.put("114", "JUDCon is cool");
      c1.put("211", "JBoss World is awesome");
      c2.put("212", "JBoss rules");
      c1.put("213", "JBoss division of RedHat ");
      c2.put("214", "RedHat community");

      Map<String, Long> wordCountMap = c1.entrySet().parallelStream()
         .map(e -> e.getValue().split("\\s"))
         .flatMap(Arrays::stream)
         .collect(() -> Collectors.groupingBy(Function.identity(), Collectors.counting()));
   }
}

In this case it is pretty simple to do the word count from the previous example.

However what if we want to find the most frequent word in the example? If you take a second to think about this case you will realize you need to have all words counted and available locally first. Thus we actually have a few options.

We could use a finisher on the collector, which is invoked on the user thread after all the results have been collected. Some redundant lines have been removed from the previous example.

public class WordCountExample {
   public static void main(String[] args) {
      // Lines removed

      String mostFrequentWord = c1.entrySet().parallelStream()
         .map(e -> e.getValue().split("\\s"))
         .flatMap(Arrays::stream)
         .collect(() -> Collectors.collectingAndThen(
            Collectors.groupingBy(Function.identity(), Collectors.counting()),
               wordCountMap -> {
                  String mostFrequent = null;
                  long maxCount = 0;
                     for (Map.Entry<String, Long> e : wordCountMap.entrySet()) {
                        int count = e.getValue().intValue();
                        if (count > maxCount) {
                           maxCount = count;
                           mostFrequent = e.getKey();
                        }
                     }
                     return mostFrequent;
               }));

}

Unfortunately the last step is only going to be ran in a single thread, which if we have a lot of words could be quite slow. Maybe there is another way to parallelize this with Streams.

We mentioned before we are in the local node after processing, so we could actually use a stream on the map results. We can therefore use a parallel stream on the results.

public class WordFrequencyExample {
   public static void main(String[] args) {
      // Lines removed

      Map<String, Long> wordCount = c1.entrySet().parallelStream()
              .map(e -> e.getValue().split("\\s"))
              .flatMap(Arrays::stream)
              .collect(() -> Collectors.groupingBy(Function.identity(), Collectors.counting()));
      Optional<Map.Entry<String, Long>> mostFrequent = wordCount.entrySet().parallelStream().reduce(
              (e1, e2) -> e1.getValue() > e2.getValue() ? e1 : e2);

This way you can still utilize all of the cores locally when calculating the most frequent element.

Remove specific entries

Distributed streams can also be used as a way to modify data where it lives. For example you may want to remove all entries in your cache that contain a specific word.

public class RemoveBadWords {
   public static void main(String[] args) {
      // Lines removed
      String word = ..

      c1.entrySet().parallelStream()
         .filter(e -> e.getValue().contains(word))
         .forEach((c, e) -> c.remove(e.getKey()));

If we carefully note what is serialized and what is not, we notice that only the word along with the operations are serialized across to other nods as it is captured by the lambda. However the real saving piece is that the cache operation is performed on the primary owner thus reducing the amount of network traffic required to remove these values from the cache. The cache is not captured by the lambda as we provide a special BiConsumer method override that when invoked on each node passes the cache to the BiConsumer

One thing to keep in mind using the forEach command in this manner is that the underlying stream obtains no locks. The cache remove operation will still obtain locks naturally, but the value could have changed from what the stream saw. That means that the entry could have been changed after the stream read it but the remove actually removed it.

We have specifically added a new variant which is called LockedStream.

Plenty of other examples

The Streams API is a JRE tool and there are lots of examples for using it. Just remember that your operations need to be Serializable in some way.

10. Using the CDI Extension

Infinispan provides an extension that integrates with the CDI (Contexts and Dependency Injection) programming model and allows you to:

  • Configure and inject caches into CDI Beans and Java EE components.

  • Configure cache managers.

  • Receive cache and cache manager level events.

  • Control data storage and retrieval using JCache annotations.

10.1. CDI Dependencies

Update your pom.xml with one of the following dependencies to include the Infinispan CDI extension in your project:

Embedded (Library) Mode
<dependency>
  <groupId>org.infinispan</groupId>
  <artifactId>infinispan-cdi-embedded</artifactId>
</dependency>
Server Mode
<dependency>
  <groupId>org.infinispan</groupId>
  <artifactId>infinispan-cdi-remote</artifactId>
</dependency>

10.2. Injecting Embedded Caches

Set up CDI beans to inject embedded caches.

Procedure
  1. Create a cache qualifier annotation.

    ...
    import javax.inject.Qualifier;
    
    @Qualifier
    @Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})
    @Retention(RetentionPolicy.RUNTIME)
    @Documented
    public @interface GreetingCache { (1)
    }
    1 Creates a @GreetingCache qualifier.
  2. Add a producer method that defines the cache configuration.

    ...
    import org.infinispan.configuration.cache.Configuration;
    import org.infinispan.configuration.cache.ConfigurationBuilder;
    import org.infinispan.cdi.ConfigureCache;
    import javax.enterprise.inject.Produces;
    
    public class Config {
    
        @ConfigureCache("mygreetingcache") (1)
        @GreetingCache (2)
        @Produces
        public Configuration greetingCacheConfiguration() {
            return new ConfigurationBuilder()
                        .memory()
                            .size(1000)
                        .build();
        }
    }
    1 Names the cache to inject.
    2 Adds the cache qualifier.
  3. Add a producer method that creates a clustered Cache Manager, if required

    ...
    package org.infinispan.configuration.global.GlobalConfigurationBuilder;
    
    public class Config {
    
        @GreetingCache (1)
        @Produces
        @ApplicationScoped (2)
        public EmbeddedCacheManager defaultClusteredCacheManager() { (3)
          return new DefaultCacheManager(
            new GlobalConfigurationBuilder().transport().defaultTransport().build();
       }
    }
    1 Adds the cache qualifier.
    2 Creates the bean once for the application. Producers that create Cache Managers should always include the @ApplicationScoped annotation to avoid creating multiple Cache Managers.
    3 Creates a new DefaultCacheManager instance that is bound to the @GreetingCache qualifier.

    Cache managers are heavy weight objects. Having more than one Cache Manager running in your application can degrade performance. When injecting multiple caches, either add the qualifier of each cache to the Cache Manager producer method or do not add any qualifier.

  4. Add the @GreetingCache qualifier to your cache injection point.

    ...
    import javax.inject.Inject;
    
    public class GreetingService {
    
        @Inject @GreetingCache
        private Cache<String, String> cache;
    
        public String greet(String user) {
            String cachedValue = cache.get(user);
            if (cachedValue == null) {
                cachedValue = "Hello " + user;
                cache.put(user, cachedValue);
            }
            return cachedValue;
        }
    }

10.3. Injecting Remote Caches

Set up CDI beans to inject remote caches.

Procedure
  1. Create a cache qualifier annotation.

    @Remote("mygreetingcache") (1)
    @Qualifier
    @Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})
    @Retention(RetentionPolicy.RUNTIME)
    @Documented
    public @interface RemoteGreetingCache { (2)
    }
    1 names the cache to inject.
    2 creates a @RemoteGreetingCache qualifier.
  2. Add the @RemoteGreetingCache qualifier to your cache injection point.

    public class GreetingService {
    
        @Inject @RemoteGreetingCache
        private RemoteCache<String, String> cache;
    
        public String greet(String user) {
            String cachedValue = cache.get(user);
            if (cachedValue == null) {
                cachedValue = "Hello " + user;
                cache.put(user, cachedValue);
            }
            return cachedValue;
        }
    }
Tips for injecting remote caches
  • You can inject remote caches without using qualifiers.

       ...
       @Inject
       @Remote("greetingCache")
       private RemoteCache<String, String> cache;
  • If you have more than one Infinispan cluster, you can create separate remote Cache Manager producers for each cluster.

    ...
    import javax.enterprise.context.ApplicationScoped;
    
    public class Config {
    
        @RemoteGreetingCache
        @Produces
        @ApplicationScoped (1)
        public ConfigurationBuilder builder = new ConfigurationBuilder(); (2)
            builder.addServer().host("localhost").port(11222);
            return new RemoteCacheManager(builder.build());
        }
    }
    1 creates the bean once for the application. Producers that create Cache Managers should always include the @ApplicationScoped annotation to avoid creating multiple Cache Managers, which are heavy weight objects.
    2 creates a new RemoteCacheManager instance that is bound to the @RemoteGreetingCache qualifier.

10.4. JCache Caching Annotations

You can use the following JCache caching annotations with CDI managed beans when JCache artifacts are on the classpath:

@CacheResult

caches the results of method calls.

@CachePut

caches method parameters.

@CacheRemoveEntry

removes entries from a cache.

@CacheRemoveAll

removes all entries from a cache.

Target type: You can use these JCache caching annotations on methods only.

To use JCache caching annotations, declare interceptors in the beans.xml file for your application.

Managed Environments (Application Server)
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
   version="1.2" bean-discovery-mode="annotated">

  <interceptors>
    <class>org.infinispan.jcache.annotation.InjectedCacheResultInterceptor</class>
    <class>org.infinispan.jcache.annotation.InjectedCachePutInterceptor</class>
    <class>org.infinispan.jcache.annotation.InjectedCacheRemoveEntryInterceptor</class>
    <class>org.infinispan.jcache.annotation.InjectedCacheRemoveAllInterceptor</class>
  </interceptors>
</beans>
Non-managed Environments (Standalone)
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
   version="1.2" bean-discovery-mode="annotated">

  <interceptors>
    <class>org.infinispan.jcache.annotation.CacheResultInterceptor</class>
    <class>org.infinispan.jcache.annotation.CachePutInterceptor</class>
    <class>org.infinispan.jcache.annotation.CacheRemoveEntryInterceptor</class>
    <class>org.infinispan.jcache.annotation.CacheRemoveAllInterceptor</class>
  </interceptors>
</beans>
JCache Caching Annotation Examples

The following example shows how the @CacheResult annotation caches the results of the GreetingService.greet() method:

import javax.cache.interceptor.CacheResult;

public class GreetingService {

    @CacheResult
    public String greet(String user) {
        return "Hello" + user;
    }
}

With JCache annotations, the default cache uses the fully qualified name of the annotated method with its parameter types, for example:
org.infinispan.example.GreetingService.greet(java.lang.String)

To use caches other than the default, use the cacheName attribute to specify the cache name as in the following example:

@CacheResult(cacheName = "greeting-cache")

10.5. Receiving Cache and Cache Manager Events

You can use CDI Events to receive Cache and Cache Manager level events.

  • Use the @Observes annotation as in the following example:

import javax.enterprise.event.Observes;
import org.infinispan.notifications.cachemanagerlistener.event.CacheStartedEvent;
import org.infinispan.notifications.cachelistener.event.*;

public class GreetingService {

    // Cache level events
    private void entryRemovedFromCache(@Observes CacheEntryCreatedEvent event) {
        ...
    }

    // Cache manager level events
    private void cacheStarted(@Observes CacheStartedEvent event) {
        ...
    }
}

11. Using the JCache API

Infinispan provides an implementation of the JCache (JSR-107) API that specifies a standard Java API for caching temporary Java objects in memory. Caching Java objects can help get around bottlenecks arising from using data that is expensive to retrieve or data that is hard to calculate. Caching these type of objects in memory can help speed up application performance by retrieving the data directly from memory instead of doing an expensive roundtrip or recalculation.

11.1. Creating embedded caches

Prerequisites
  1. Ensure that cache-api is on your classpath.

  2. Add the following dependency to your pom.xml:

    <dependency>
      <groupId>org.infinispan</groupId>
      <artifactId>infinispan-jcache</artifactId>
    </dependency>
Procedure
  • Create embedded caches that use the default JCache API configuration as follows:

import javax.cache.*;
import javax.cache.configuration.*;

// Retrieve the system wide Cache Manager
CacheManager cacheManager = Caching.getCachingProvider().getCacheManager();
// Define a named cache with default JCache configuration
Cache<String, String> cache = cacheManager.createCache("namedCache",
      new MutableConfiguration<String, String>());

11.1.1. Configuring embedded caches

  • Pass the URI for custom Infinispan configuration to the CachingProvider.getCacheManager(URI) call as follows:

import java.net.URI;
import javax.cache.*;
import javax.cache.configuration.*;

// Load configuration from an absolute filesystem path
URI uri = URI.create("file:///path/to/infinispan.xml");
// Load configuration from a classpath resource
// URI uri = this.getClass().getClassLoader().getResource("infinispan.xml").toURI();

// Create a Cache Manager using the above configuration
CacheManager cacheManager = Caching.getCachingProvider().getCacheManager(uri, this.getClass().getClassLoader(), null);
By default, the JCache API specifies that data should be stored as storeByValue, so that object state mutations outside of operations to the cache, won’t have an impact in the objects stored in the cache. Infinispan has so far implemented this using serialization/marshalling to make copies to store in the cache, and that way adhere to the spec. Hence, if using default JCache configuration with Infinispan, data stored must be marshallable.

Alternatively, JCache can be configured to store data by reference (just like Infinispan or JDK Collections work). To do that, simply call:

Cache<String, String> cache = cacheManager.createCache("namedCache",
      new MutableConfiguration<String, String>().setStoreByValue(false));

11.2. Store and retrieve data

Even though JCache API does not extend neither java.util.Map not java.util.concurrent.ConcurrentMap, it providers a key/value API to store and retrieve data:

import javax.cache.*;
import javax.cache.configuration.*;

CacheManager cacheManager = Caching.getCachingProvider().getCacheManager();
Cache<String, String> cache = cacheManager.createCache("namedCache",
      new MutableConfiguration<String, String>());
cache.put("hello", "world"); // Notice that javax.cache.Cache.put(K) returns void!
String value = cache.get("hello"); // Returns "world"

Contrary to standard java.util.Map, javax.cache.Cache comes with two basic put methods called put and getAndPut. The former returns void whereas the latter returns the previous value associated with the key. So, the equivalent of java.util.Map.put(K) in JCache is javax.cache.Cache.getAndPut(K).

Even though JCache API only covers standalone caching, it can be plugged with a persistence store, and has been designed with clustering or distribution in mind. The reason why javax.cache.Cache offers two put methods is because standard java.util.Map put call forces implementors to calculate the previous value. When a persistent store is in use, or the cache is distributed, returning the previous value could be an expensive operation, and often users call standard java.util.Map.put(K) without using the return value. Hence, JCache users need to think about whether the return value is relevant to them, in which case they need to call javax.cache.Cache.getAndPut(K) , otherwise they can call java.util.Map.put(K, V) which avoids returning the potentially expensive operation of returning the previous value.

11.3. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs

Here’s a brief comparison of the data manipulation APIs provided by java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs.

Operation java.util.concurrent.ConcurrentMap<K, V> javax.cache.Cache<K, V>

store and no return

N/A 

void put(K key)

store and return previous value

V put(K key)

V getAndPut(K key)

store if not present

V putIfAbsent(K key, V value)

boolean putIfAbsent(K key, V value)

retrieve

V get(Object key)

V get(K key)

delete if present

V remove(Object key)

boolean remove(K key)

delete and return previous value

V remove(Object key)

V getAndRemove(K key)

delete conditional

boolean remove(Object key, Object value)

boolean remove(K key, V oldValue)

replace if present

V replace(K key, V value)

boolean replace(K key, V value)

replace and return previous value

V replace(K key, V value)

V getAndReplace(K key, V value)

replace conditional

boolean replace(K key, V oldValue, V newValue)

boolean replace(K key, V oldValue, V newValue)

Comparing the two APIs, it’s obvious to see that, where possible, JCache avoids returning the previous value to avoid operations doing expensive network or IO operations. This is an overriding principle in the design of JCache API. In fact, there’s a set of operations that are present in java.util.concurrent.ConcurrentMap , but are not present in the javax.cache.Cache because they could be expensive to compute in a distributed cache. The only exception is iterating over the contents of the cache:

Operation java.util.concurrent.ConcurrentMap<K, V> javax.cache.Cache<K, V>

calculate size of cache

int size()

 N/A

return all keys in the cache

Set<K> keySet()

 N/A

return all values in the cache

Collection<V> values()

 N/A

return all entries in the cache

Set<Map.Entry<K, V>> entrySet()

 N/A

iterate over the cache

use iterator() method on keySet, values or entrySet

Iterator<Cache.Entry<K, V>> iterator()

11.4. Clustering JCache instances

Infinispan JCache implementation goes beyond the specification in order to provide the possibility to cluster caches using the standard API. Given a Infinispan configuration file configured to replicate caches like this:

infinispan.xml
<infinispan>
   <cache-container default-cache="namedCache">
      <transport cluster="jcache-cluster" />
      <replicated-cache name="namedCache" />
   </cache-container>
</infinispan>

You can create a cluster of caches using this code:

import javax.cache.*;
import java.net.URI;

// For multiple Cache Managers to be constructed with the standard JCache API
// and live in the same JVM, either their names, or their classloaders, must
// be different.
// This example shows how to force their classloaders to be different.
// An alternative method would have been to duplicate the XML file and give
// it a different name, but this results in unnecessary file duplication.
ClassLoader tccl = Thread.currentThread().getContextClassLoader();
CacheManager cacheManager1 = Caching.getCachingProvider().getCacheManager(
      URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));
CacheManager cacheManager2 = Caching.getCachingProvider().getCacheManager(
      URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));

Cache<String, String> cache1 = cacheManager1.getCache("namedCache");
Cache<String, String> cache2 = cacheManager2.getCache("namedCache");

cache1.put("hello", "world");
String value = cache2.get("hello"); // Returns "world" if clustering is working

// --

public static class TestClassLoader extends ClassLoader {
  public TestClassLoader(ClassLoader parent) {
     super(parent);
  }
}

12. Multimap cache

MutimapCache is a type of Infinispan Cache that maps keys to values in which each key can contain multiple values.

12.1. Multimap Cache

MutimapCache is a type of Infinispan Cache that maps keys to values in which each key can contain multiple values.

12.1.1. Installation and configuration

pom.xml
<dependency>
  <groupId>org.infinispan</groupId>
  <artifactId>infinispan-multimap</artifactId>
</dependency>

12.1.2. MultimapCache API

MultimapCache API exposes several methods to interact with the Multimap Cache. These methods are non-blocking in most cases; see limitations for more information.

public interface MultimapCache<K, V> {

   CompletableFuture<Optional<CacheEntry<K, Collection<V>>>> getEntry(K key);

   CompletableFuture<Void> remove(SerializablePredicate<? super V> p);

   CompletableFuture<Void> put(K key, V value);

   CompletableFuture<Collection<V>> get(K key);

   CompletableFuture<Boolean> remove(K key);

   CompletableFuture<Boolean> remove(K key, V value);

   CompletableFuture<Void> remove(Predicate<? super V> p);

   CompletableFuture<Boolean> containsKey(K key);

   CompletableFuture<Boolean> containsValue(V value);

   CompletableFuture<Boolean> containsEntry(K key, V value);

   CompletableFuture<Long> size();

   boolean supportsDuplicates();

}
CompletableFuture<Void> put(K key, V value)

Puts a key-value pair in the multimap cache.

MultimapCache<String, String> multimapCache = ...;

multimapCache.put("girlNames", "marie")
             .thenCompose(r1 -> multimapCache.put("girlNames", "oihana"))
             .thenCompose(r3 -> multimapCache.get("girlNames"))
             .thenAccept(names -> {
                          if(names.contains("marie"))
                              System.out.println("Marie is a girl name");

                           if(names.contains("oihana"))
                              System.out.println("Oihana is a girl name");
                        });

The output of this code is as follows:

Marie is a girl name
Oihana is a girl name
CompletableFuture<Collection<V>> get(K key)

Asynchronous that returns a view collection of the values associated with key in this multimap cache, if any. Any changes to the retrieved collection won’t change the values in this multimap cache. When this method returns an empty collection, it means the key was not found.

CompletableFuture<Boolean> remove(K key)

Asynchronous that removes the entry associated with the key from the multimap cache, if such exists.

CompletableFuture<Boolean> remove(K key, V value)

Asynchronous that removes a key-value pair from the multimap cache, if such exists.

CompletableFuture<Void> remove(Predicate<? super V> p)

Asynchronous method. Removes every value that match the given predicate.

CompletableFuture<Boolean> containsKey(K key)

Asynchronous that returns true if this multimap contains the key.

CompletableFuture<Boolean> containsValue(V value)

Asynchronous that returns true if this multimap contains the value in at least one key.

CompletableFuture<Boolean> containsEntry(K key, V value)

Asynchronous that returns true if this multimap contains at least one key-value pair with the value.

CompletableFuture<Long> size()

Asynchronous that returns the number of key-value pairs in the multimap cache. It doesn’t return the distinct number of keys.

boolean supportsDuplicates()

Asynchronous that returns true if the multimap cache supports duplicates. This means that the content of the multimap can be 'a' → ['1', '1', '2']. For now this method will always return false, as duplicates are not yet supported. The existence of a given value is determined by 'equals' and `hashcode' method’s contract.

12.1.3. Creating a Multimap Cache

Currently the MultimapCache is configured as a regular cache. This can be done either by code or XML configuration. See how to configure a regular cache in Configuring Infinispan caches.

Embedded mode
// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager cm = ... ;

// create or obtain a MultimapCacheManager passing the EmbeddedCacheManager
MultimapCacheManager multimapCacheManager = EmbeddedMultimapCacheManagerFactory.from(cm);

// define the configuration for the multimap cache
multimapCacheManager.defineConfiguration(multimapCacheName, c.build());

// get the multimap cache
multimapCache = multimapCacheManager.get(multimapCacheName);

12.1.4. Limitations

In almost every case the Multimap Cache will behave as a regular Cache, but some limitations exist in the current version, as follows:

Support for duplicates

Duplicates are not supported yet. This means that the multimap won’t contain any duplicate key-value pair. Whenever put method is called, if the key-value pair already exist, this key-value par won’t be added. Methods used to check if a key-value pair is already present in the Multimap are the equals and hashcode.

Eviction

For now, the eviction works per key, and not per key-value pair. This means that whenever a key is evicted, all the values associated with the key will be evicted too.

Transactions

Implicit transactions are supported through the auto-commit and all the methods are non blocking. Explicit transactions work without blocking in most of the cases. Methods that will block are size, containsEntry and remove(Predicate<? super V> p)

13. Infinispan Modules for WildFly

To use Infinispan inside applications deployed to WildFly, you should install Infinispan modules that:

  • Let you deploy applications without packaging Infinispan JAR files in your WAR or EAR file.

  • Allow you to use a Infinispan version that is independent to the one bundled with WildFly.

Infinispan modules are deprecated and planned for removal. These modules provide a temporary solution until WildFly directly manages the infinispan subsystem.

13.1. Installing Infinispan Modules

Download and install Infinispan modules for WildFly.

Prerequisites
  1. JDK 8 or later.

  2. An existing WildFly installation.

Procedure
  1. Download the ZIP archive for the modules from the Infinispan software downloads.

  2. Extract the ZIP archive and copy the contents of modules to the modules directory of your WildFly installation so that you get the resulting structure:

    $WILDFLY_HOME/modules/system/add-ons/ispn/org/infinispan/ispn-14.0

13.2. Configuring Applications to Use Infinispan Modules

After you install Infinispan modules for WildFly, configure your application to use Infinispan functionality.

Procedure
  1. In your project pom.xml file, mark the required Infinispan dependencies as provided.

  2. Configure your artifact archiver to generate the appropriate MANIFEST.MF file.

pom.xml
<dependencies>
  <dependency>
    <groupId>org.infinispan</groupId>
    <artifactId>infinispan-core</artifactId>
    <scope>provided</scope>
  </dependency>
  <dependency>
    <groupId>org.infinispan</groupId>
    <artifactId>infinispan-cachestore-jdbc</artifactId>
    <scope>provided</scope>
  </dependency>
</dependencies>
<build>
  <plugins>
     <plugin>
       <groupId>org.apache.maven.plugins</groupId>
       <artifactId>maven-war-plugin</artifactId>
       <configuration>
         <archive>
           <manifestEntries>
             <Dependencies>org.infinispan:ispn-14.0 services</Dependencies>
           </manifestEntries>
         </archive>
      </configuration>
    </plugin>
  </plugins>
</build>

Infinispan functionality is packaged as a single module, org.infinispan, that you can add as an entry to your application’s manifest as follows:

MANIFEST.MF
Manifest-Version: 1.0
Dependencies: org.infinispan:ispn-14.0 services
AWS dependencies

If you require AWS dependencies, such as S3_PING, add the following module to your application’s manifest:

Manifest-Version: 1.0
Dependencies: com.amazonaws.aws-java-sdk:ispn-14.0 services

14. Custom Interceptors

Custom interceptors are deprecated in Infinispan and will be removed in a future version.

Custom interceptors are a way of extending Infinispan by being able to influence or respond to any modifications to cache. Example of such modifications are: elements are added/removed/updated or transactions are committed.

14.1. Adding custom interceptors declaratively

Custom interceptors can be added on a per named cache basis. This is because each named cache have its own interceptor stack. Following xml snippet depicts the ways in which a custom interceptor can be added.

<local-cache name="cacheWithCustomInterceptors">
  <!-- Define custom interceptors. -->
  <!-- Custom interceptors should extend
       org.infinispan.interceptors.BaseCustomAsyncInterceptor -->
  <custom-interceptors>
    <interceptor position="FIRST" class="com.mycompany.CustomInterceptor1">
      <property name="attributeOne">value1</property>
      <property name="attributeTwo">value2</property>
    </interceptor>
    <interceptor position="LAST" class="com.mycompany.CustomInterceptor2"/>
    <interceptor index="3" class="com.mycompany.CustomInterceptor1"/>
    <interceptor before="org.infinispanpan.interceptors.CallInterceptor"
                 class="com.mycompany.CustomInterceptor2"/>
    <interceptor after="org.infinispanpan.interceptors.CallInterceptor"
                 class="com.mycompany.CustomInterceptor1"/>
  </custom-interceptors>
</local-cache>

14.2. Adding custom interceptors programmatically

In order to do that one needs to obtain a reference to the AdvancedCache. This can be done as follows:

CacheManager cm = getCacheManager();//magic
Cache aCache = cm.getCache("aName");
AdvancedCache advCache = aCache.getAdvancedCache();

Then one of the addInterceptor() methods should be used to add the actual interceptor. For further documentation refer to AdvancedCache javadoc.

14.3. Custom interceptor design

When writing a custom interceptor, you need to abide by the following rules.

  • Custom interceptors must declare a public, empty constructor to enable construction.

  • Custom interceptors will have setters for any property defined through property tags used in the XML configuration.

15. Functional Map API

Infinispan provides an experimental API for interacting with your data which takes advantage of the functional programming additions and improved asynchronous programming capabilities available in Java 8.

15.1. Using the Functional Map API

Infinispan’s Functional Map API is a distilled map-like asynchronous API which uses functions to interact with data.

15.1.1. Asynchronous and Lazy

Being an asynchronous API, all methods that return a single result, return a CompletableFuture which wraps the result, so you can use the resources of your system more efficiently by having the possibility to receive callbacks when the CompletableFuture has completed, or you can chain or compose them with other CompletableFuture.

For those operations that return multiple results, the API returns instances of a Traversable interface which offers a lazy pull-style API for working with multiple results.

Traversable, being a lazy pull-style API, can still be asynchronous underneath since the user can decide to work on the traversable at a later stage, and the Traversable implementation itself can decide when to compute those results.

15.1.2. Function transparency

Since the content of the functions is transparent to Infinispan, the API has been split into 3 interfaces for read-only ( ReadOnlyMap ), read-write ( ReadWriteMap ) and write-only ( WriteOnlyMap ) operations respectively, in order to provide hints to the Infinispan internals on the type of work needed to support functions.

15.1.3. Constructing Functional Maps

To construct any of the read-only, write-only or read-write map instances, an Infinispan AdvancedCache is required, which is retrieved from the Cache Manager, and using the AdvancedCache , static method factory methods are used to create ReadOnlyMap , ReadWriteMap or WriteOnlyMap

import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.impl.*;
import org.infinispan.AdvancedCache;

AdvancedCache<String, String> cache = ...

FunctionalMapImpl<String, String> functionalMap = FunctionalMapImpl.create(cache);
ReadOnlyMap<String, String> readOnlyMap = ReadOnlyMapImpl.create(functionalMap);
WriteOnlyMap<String, String> writeOnlyMap = WriteOnlyMapImpl.create(functionalMap);
ReadWriteMap<String, String> readWriteMap = ReadWriteMapImpl.create(functionalMap);
At this stage, the Functional Map API is experimental and hence the way FunctionalMap, ReadOnlyMap, WriteOnlyMap and ReadWriteMap are constructed is temporary.

15.1.4. Read-Only Map API

Read-only operations have the advantage that no locks are acquired for the duration of the operation. Here’s an example on how to the equivalent operation for Map.get(K):

import org.infinispan.functional.EntryView.ReadEntryView;
import org.infinispan.functional.FunctionalMap.ReadOnlyMap;

ReadOnlyMap<String, String> readOnlyMap = ...
CompletableFuture<Optional<String>> readFuture = readOnlyMap.eval("key1", ReadEntryView::find);
readFuture.thenAccept(System.out::println);

Read-only map also exposes operations to retrieve multiple keys in one go:

import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.Traversable;

ReadOnlyMap<String, String> readOnlyMap = ...

Set<String> keys = new HashSet<>(Arrays.asList("key1", "key2"));
Traversable<String> values = readOnlyMap.evalMany(keys, ReadEntryView::get);
values.forEach(System.out::println);

Finally, read-only map also exposes methods to read all existing keys as well as entries, which include both key and value information.

Read-Only Entry View

The function parameters for read-only maps provide the user with a read-only entry view to interact with the data in the cache, which include these operations:

  • key() method returns the key for which this function is being executed.

  • find() returns a Java 8 Optional wrapping the value if present, otherwise it returns an empty optional. Unless the value is guaranteed to be associated with the key, it’s recommended to use find() to verify whether there’s a value associated with the key.

  • get() returns the value associated with the key. If the key has no value associated with it, calling get() throws a NoSuchElementException. get() can be considered as a shortcut of ReadEntryView.find().get() which should be used only when the caller has guarantees that there’s definitely a value associated with the key.

  • findMetaParam(Class<T> type) allows metadata parameter information associated with the cache entry to be looked up, for example: entry lifespan, last accessed time…​etc. See Metadata Parameter Handling to find out more.

15.1.5. Write-Only Map API

Write-only operations include operations that insert or update data in the cache and also removals. Crucially, a write-only operation does not attempt to read any previous value associated with the key. This is an important optimization since that means neither the cluster nor any persistence stores will be looked up to retrieve previous values. In the main Infinispan Cache, this kind of optimization was achieved using a local-only per-invocation flag, but the use case is so common that in this new functional API, this optimization is provided as a first-class citizen.

Using write-only map API , an operation equivalent to javax.cache.Cache (JCache) 's void returning put can be achieved this way, followed by an attempt to read the stored value using the read-only map API:

import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "value1",
   (v, view) -> view.set(v));
CompletableFuture<String> readFuture = writeFuture.thenCompose(r ->
   readOnlyMap.eval("key1", ReadEntryView::get));
readFuture.thenAccept(System.out::println);

Multiple key/value pairs can be stored in one go using evalMany API:

WriteOnlyMap<String, String> writeOnlyMap = ...

Map<K, String> data = new HashMap<>();
data.put("key1", "value1");
data.put("key2", "value2");
CompletableFuture<Void> writerAllFuture = writeOnlyMap.evalMany(data, (v, view) -> view.set(v));
writerAllFuture.thenAccept(x -> "Write completed");

To remove all contents of the cache, there are two possibilities with different semantics. If using evalAll each cached entry is iterated over and the function is called with that entry’s information. Using this method also results in listeners being invoked.

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> removeAllFuture = writeOnlyMap.evalAll(WriteEntryView::remove);
removeAllFuture.thenAccept(x -> "All entries removed");

The alternative way to remove all entries is to call truncate operation which clears the entire cache contents in one go without invoking any listeners and is best-effort:

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> truncateFuture = writeOnlyMap.truncate();
truncateFuture.thenAccept(x -> "Cache contents cleared");
Write-Only Entry View

The function parameters for write-only maps provide the user with a write-only entry view to modify the data in the cache, which include these operations:

  • set(V, MetaParam.Writable…​) method allows for a new value to be associated with the cache entry for which this function is executed, and it optionally takes zero or more metadata parameters to be stored along with the value. See Metadata Parameter Handling for more information.

  • remove() method removes the cache entry, including both value and metadata parameters associated with this key.

15.1.6. Read-Write Map API

The final type of operations we have are read­write operations, and within this category CAS-like (Compare­And­Swap) operations can be found. This type of operations require previous value associated with the key to be read and for locks to be acquired before executing the function. The vast majority of operations within ConcurrentMap and JCache APIs fall within this category, and they can easily be implemented using the read-write map API . Moreover, with read-write map API , you can make CAS­like comparisons not only based on value equality but based on metadata parameter equality such as version information, and you can send back previous value or boolean instances to signal whether the CAS­like comparison succeeded.

Implementing a write operation that returns the previous value associated with the cache entry is easy to achieve with the read-write map API:

import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;

ReadWriteMap<String, String> readWriteMap = ...

CompletableFuture<Optional<String>> readWriteFuture = readWriteMap.eval("key1", "value1",
   (v, view) -> {
      Optional<V> prev = rw.find();
      view.set(v);
      return prev;
   });
readWriteFuture.thenAccept(System.out::println);

ConcurrentMap.replace(K, V, V) is a replace function that compares the value present in the map and if it’s equals to the value passed in as first parameter, the second value is stored, returning a boolean indicating whether the replace was successfully completed. This operation can easily be implemented using the read-write map API:

ReadWriteMap<String, String> readWriteMap = ...

String oldValue = "old-value";
CompletableFuture<Boolean> replaceFuture = readWriteMap.eval("key1", "value1", (v, view) -> {
   return view.find().map(prev -> {
      if (prev.equals(oldValue)) {
         rw.set(v);
         return true; // previous value present and equals to the expected one
      }
      return false; // previous value associated with key does not match
   }).orElse(false); // no value associated with this key
});
replaceFuture.thenAccept(replaced -> System.out.printf("Value was replaced? %s%n", replaced));
The function in the example above captures oldValue which is an external value to the function which is valid use case.

Read-write map API contains evalMany and evalAll operations which behave similar to the write-only map offerings, except that they enable previous value and metadata parameters to be read.

Read-Write Entry View

The function parameters for read-write maps provide the user with the possibility to query the information associated with the key, including value and metadata parameters, and the user can also use this read-write entry view to modify the data in the cache.

The operations are exposed by read-write entry views are a union of the operations exposed by read-only entry views and write-only entry views.

15.1.7. Metadata Parameter Handling

Metadata parameters provide extra information about the cache entry, such as version information, lifespan, last accessed/used time…​etc. Some of these can be provided by the user, e.g. version, lifespan…​etc, but some others are computed internally and can only be queried, e.g. last accessed/used time.

The functional map API provides a flexible way to store metadata parameters along with an cache entry. To be able to store a metadata parameter, it must extend MetaParam.Writable interface, and implement the methods to allow the internal logic to extra the data. Storing is done via the set(V, MetaParam.Writable…​) method in the write-only entry view or read-write entry view function parameters.

Querying metadata parameters is available via the findMetaParam(Class) method available via read-write entry view or read-only entry views or function parameters.

Here is an example showing how to store metadata parameters and how to query them:

import java.time.Duration;
import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.MetaParam.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "value1",
   (v, view) -> view.set(v, new MetaLifespan(Duration.ofHours(1).toMillis())));
CompletableFuture<MetaLifespan> readFuture = writeFuture.thenCompose(r ->
   readOnlyMap.eval("key1", view -> view.findMetaParam(MetaLifespan.class).get()));
readFuture.thenAccept(System.out::println);

If the metadata parameter is generic, for example MetaEntryVersion<T> , retrieving the metadata parameter along with a specific type can be tricky if using .class static helper in a class because it does not return a Class<T> but only Class, and hence any generic information in the class is lost:

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
   // If caller depends on the typed information, this is not an ideal way to retrieve it
   // If the caller does not depend on the specific type, this works just fine.
   Optional<MetaEntryVersion> version = view.findMetaParam(MetaEntryVersion.class);
   return view.get();
});

When generic information is important the user can define a static helper method that coerces the static class retrieval to the type requested, and then use that helper method in the call to findMetaParam:

class MetaEntryVersion<T> implements MetaParam.Writable<EntryVersion<T>> {
   ...
   public static <T> T type() { return (T) MetaEntryVersion.class; }
   ...
}

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
   // The caller wants guarantees that the metadata parameter for version is numeric
   // e.g. to query the actual version information
   Optional<MetaEntryVersion<Long>> version = view.findMetaParam(MetaEntryVersion.type());
   return view.get();
});

Finally, users are free to create new instances of metadata parameters to suit their needs. They are stored and retrieved in the very same way as done for the metadata parameters already provided by the functional map API.

15.1.8. Invocation Parameter

Per-invocation parameters are applied to regular functional map API calls to alter the behaviour of certain aspects. Adding per invocation parameters is done using the withParams(Param<?>…​) method.

Param.FutureMode tweaks whether a method returning a CompletableFuture will span a thread to invoke the method, or instead will use the caller thread. By default, whenever a call is made to a method returning a CompletableFuture , a separate thread will be span to execute the method asynchronously. However, if the caller will immediately block waiting for the CompletableFuture to complete, spanning a different thread is wasteful, and hence Param.FutureMode.COMPLETED can be passed as per-invocation parameter to avoid creating that extra thread. Example:

import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.Param.*;

ReadOnlyMap<String, String> readOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMapCompleted = readOnlyMap.withParams(FutureMode.COMPLETED);
Optional<String> readFuture = readOnlyMapCompleted.eval("key1", ReadEntryView::find).get();

Param.PersistenceMode controls whether a write operation will be propagated to a persistence store. The default behaviour is for all write-operations to be propagated to the persistence store if the cache is configured with a persistence store. By passing PersistenceMode.SKIP as parameter, the write operation skips the persistence store and its effects are only seen in the in-memory contents of the cache. PersistenceMode.SKIP can be used to implement an Cache.evict() method which removes data from memory but leaves the persistence store untouched:

import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.Param.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
WriteOnlyMap<String, String> skiPersistMap = writeOnlyMap.withParams(PersistenceMode.SKIP);
CompletableFuture<Void> removeFuture = skiPersistMap.eval("key1", WriteEntryView::remove);

Note that there’s no need for another PersistenceMode option to skip reading from the persistence store, because a write operation can skip reading previous value from the store by calling a write-only operation via the WriteOnlyMap.

Finally, new Param implementations are normally provided by the functional map API since they tweak how the internal logic works. So, for the most part of users, they should limit themselves to using the Param instances exposed by the API. The exception to this rule would be advanced users who decide to add new interceptors to the internal stack. These users have the ability to query these parameters within the interceptors.

15.1.9. Functional Listeners

The functional map offers a listener API, where clients can register for and get notified when events take place. These notifications are post-event, so that means the events are received after the event has happened.

The listeners that can be registered are split into two categories: write listeners and read-write listeners.

Write Listeners

Write listeners enable user to register listeners for any cache entry write events that happen in either a read-write or write-only functional map.

Listeners for write events cannot distinguish between cache entry created and cache entry modify/update events because they don’t have access to the previous value. All they know is that a new non-null entry has been written.

However, write event listeners can distinguish between entry removals and cache entry create/modify-update events because they can query what the new entry’s value via ReadEntryView.find() method.

Adding a write listener is done via the WriteListeners interface which is accessible via both ReadWriteMap.listeners() and WriteOnlyMap.listeners() method.

A write listener implementation can be defined either passing a function to onWrite(Consumer<ReadEntryView<K, V>>) method, or passing a WriteListener implementation to add(WriteListener<K, V>) method. Either way, all these methods return an AutoCloseable instance that can be used to de-register the function listener:

import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.Listeners.WriteListeners.WriteListener;

WriteOnlyMap<String, String> woMap = ...

AutoCloseable writeFunctionCloseHandler = woMap.listeners().onWrite(written -> {
   // `written` is a ReadEntryView of the written entry
   System.out.printf("Written: %s%n", written.get());
});
AutoCloseable writeCloseHanlder = woMap.listeners().add(new WriteListener<String, String>() {
   @Override
   public void onWrite(ReadEntryView<K, V> written) {
      System.out.printf("Written: %s%n", written.get());
   }
});

// Either wrap handler in a try section to have it auto close...
try(writeFunctionCloseHandler) {
   // Write entries using read-write or write-only functional map API
   ...
}
// Or close manually
writeCloseHanlder.close();
Read-Write Listeners

Read-write listeners enable users to register listeners for cache entry created, modified and removed events, and also register listeners for any cache entry write events.

Entry created, modified and removed events can only be fired when these originate on a read-write functional map, since this is the only one that guarantees that the previous value has been read, and hence the differentiation between create, modified and removed can be fully guaranteed.

Adding a read-write listener is done via the ReadWriteListeners interface which is accessible via ReadWriteMap.listeners() method.

If interested in only one of the event types, the simplest way to add a listener is to pass a function to either onCreate , onModify or onRemove methods. All these methods return an AutoCloseable instance that can be used to de-register the function listener:

import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;

ReadWriteMap<String, String> rwMap = ...
AutoCloseable createClose = rwMap.listeners().onCreate(created -> {
   // `created` is a ReadEntryView of the created entry
   System.out.printf("Created: %s%n", created.get());
});
AutoCloseable modifyClose = rwMap.listeners().onModify((before, after) -> {
   // `before` is a ReadEntryView of the entry before update
   // `after` is a ReadEntryView of the entry after update
   System.out.printf("Before: %s%n", before.get());
   System.out.printf("After: %s%n", after.get());
});
AutoCloseable removeClose = rwMap.listeners().onRemove(removed -> {
   // `removed` is a ReadEntryView of the removed entry
   System.out.printf("Removed: %s%n", removed.get());
});
AutoCloseable writeClose = woMap.listeners().onWrite(written -> {
   // `written` is a ReadEntryView of the written entry
   System.out.printf("Written: %s%n", written.get());
});
...
// Either wrap handler in a try section to have it auto close...
try(createClose) {
   // Create entries using read-write functional map API
   ...
}
// Or close manually
modifyClose.close();

If listening for two or more event types, it’s better to pass in an implementation of ReadWriteListener interface via the ReadWriteListeners.add() method. ReadWriteListener offers the same onCreate/onModify/onRemove callbacks with default method implementations that are empty:

import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.functional.Listeners.ReadWriteListeners.ReadWriteListener;

ReadWriteMap<String, String> rwMap = ...
AutoCloseable readWriteClose = rwMap.listeners.add(new ReadWriteListener<String, String>() {
   @Override
   public void onCreate(ReadEntryView<String, String> created) {
      System.out.printf("Created: %s%n", created.get());
   }

   @Override
   public void onModify(ReadEntryView<String, String> before, ReadEntryView<String, String> after) {
      System.out.printf("Before: %s%n", before.get());
      System.out.printf("After: %s%n", after.get());
   }

   @Override
   public void onRemove(ReadEntryView<String, String> removed) {
      System.out.printf("Removed: %s%n", removed.get());
   }
);
AutoCloseable writeClose = rwMap.listeners.add(new WriteListener<String, String>() {
   @Override
   public void onWrite(ReadEntryView<K, V> written) {
      System.out.printf("Written: %s%n", written.get());
   }
);

// Either wrap handler in a try section to have it auto close...
try(readWriteClose) {
   // Create/update/remove entries using read-write functional map API
   ...
}
// Or close manually
writeClose.close();

15.1.10. Marshalling of Functions

Running functional map in a cluster of nodes involves marshalling and replication of the operation parameters under certain circumstances.

To be more precise, when write operations are executed in a cluster, regardless of read-write or write-only operations, all the parameters to the method and the functions are replicated to other nodes.

There are multiple ways in which a function can be marshalled. The simplest way, which is also the most costly option in terms of payload size, is to mark the function as Serializable:

import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap = ...

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function =
   (Consumer<WriteEntryView<String>> & Serializable) wv -> wv.set("one");

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

Infinispan provides overloads for all functional methods that make lambdas passed directly to the API serializable by default; the compiler automatically selects this overload if that’s possible. Therefore you can call

WriteOnlyMap<String, String> writeOnlyMap = ...
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", wv -> wv.set("one"));

without doing the cast described above.

A more economical way to marshall a function is to provide an Infinispan Externalizer for it:

import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.Externalizer;
import org.infinispan.commons.marshall.SerializeFunctionWith;

WriteOnlyMap<String, String> writeOnlyMap = ...

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function = new SetStringConstant<>();
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

@SerializeFunctionWith(value = SetStringConstant.Externalizer0.class)
class SetStringConstant implements Consumer<WriteEntryView<String>> {
   @Override
   public void accept(WriteEntryView<String> view) {
      view.set("value1");
   }

   public static final class Externalizer0 implements Externalizer<Object> {
      public void writeObject(ObjectOutput oo, Object o) {
         // No-op
      }
      public Object readObject(ObjectInput input) {
         return new SetStringConstant<>();
      }
   }
}

To help users take advantage of the tiny payloads generated by Externalizer-based functions, the functional API comes with a helper class called org.infinispan.commons.marshall.MarshallableFunctions which provides marshallable functions for some of the most commonly user functions.

In fact, all the functions required to implement ConcurrentMap and JCache using the functional map API have been defined in MarshallableFunctions. For example, here is an implementation of JCache’s boolean putIfAbsent(K, V) using functional map API which can be run in a cluster:

import org.infinispan.functional.EntryView.*;
import org.infinispan.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.MarshallableFunctions;

ReadWriteMap<String, String> readWriteMap = ...

CompletableFuture<Boolean> future = readWriteMap.eval("key1,
   MarshallableFunctions.setValueIfAbsentReturnBoolean());
future.thenAccept(stored -> System.out.printf("Value was put? %s%n", stored));

15.1.11. Use Cases for Functional API

This new API is meant to complement existing Key/Value Infinispan API offerings, so you’ll still be able to use ConcurrentMap or JCache standard APIs if that’s what suits your use case best.

The target audience for this new API is either:

  • Distributed or persistent caching/in­memory­data­grid users that want to benefit from CompletableFuture and/or Traversable for async/lazy data grid or caching data manipulation. The clear advantage here is that threads do not need to be idle waiting for remote operations to complete, but instead these can be notified when remote operations complete and then chain them with other subsequent operations.

  • Users who want to go beyond the standard operations exposed by ConcurrentMap and JCache, for example, if you want to do a replace operation using metadata parameter equality instead of value equality, or if you want to retrieve metadata information from values and so on.

16. Anchored keys

16.1. Anchored Keys module

Infinispan version 11 introduces an experimental module that allows scaling up a cluster and adding new nodes without expensive state transfer.

16.1.1. Background

For background, the preferred way to scale up the storage capacity of a Infinispan cluster is to use distributed caches. A distributed cache stores each key/value pair on num-owners nodes, and each node can compute the location of a key (aka the key owners) directly.

Infinispan achieves this by statically mapping cache keys to num-segments consistent hash segments, and then dynamically mapping segments to nodes based on the cache’s topology (roughly the current plus the historical membership of the cache). Whenever a new node joins the cluster, the cache is rebalanced, and the new node replaces an existing node as the owner of some segments. The key/value pairs in those segments are copied to the new node and removed from the no-longer-owner node via state transfer.

Because the allocation of segments to nodes is based on random UUIDs generated at start time, it is common (though less so after ISPN-11679 ), for segments to also move from one old node to another old node.

16.1.2. Architecture

The basic idea is to skip the static mapping of keys to segments and to map keys directly to nodes.

When a key/value pair is inserted into the cache, the newest member becomes the anchor owner of that key, and the only node storing the actual value. In order to make the anchor location available without an extra remote lookup, all the other nodes store a reference to the anchor owner.

That way, when another node joins, it only needs to receive the location information from the existing nodes, and values can stay on the anchor owner, minimizing the amount of traffic.

16.1.3. Limitations

Only one node can be added at a time

An external actor (e.g. a Kubernetes/OpenShift operator, or a human administrator) must monitor the load on the current nodes, and add a new node whenever the newest node is close to "full".

Because the anchor owner information is replicated on all the nodes, and values are never moved off a node, the memory usage of each node will keep growing as new entries and nodes are added.
There is no redundancy

Every value is only stored on a single node. When a node crashes or even stops gracefully, the values stored on that node are lost.

Transactions are not supported

A later version may add transaction support, but the fact that any node stop or crash loses entries makes transactions a lot less valuable compared to a distributed cache.

Hot Rod clients do not know the anchor owner

Hot Rod clients cannot use the topology information from the servers to locate the anchor owner. Instead, the server receiving a Hot Rod get request must make an additional request to the anchor owner in order to retrieve the value.

16.1.4. Configuration

The module is still very young and does not yet support many Infinispan features.

Eventually, if it proves useful, it may become another cache mode, just like scattered caches. For now, configuring a cache with anchored keys requires a replicated cache with a custom element anchored-keys:

<?xml version="1.0" encoding="UTF-8"?>
<infinispan
      xmlns="urn:infinispan:config:14.0"
      xmlns:anchored="urn:infinispan:config:anchored:14.0"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xsi:schemaLocation="urn:infinispan:config:14.0
            https://infinispan.org/schemas/infinispan-config-14.0.xsd
            urn:infinispan:config:anchored:14.0
            https://infinispan.org/schemas/infinispan-anchored-config-14.0.xsd">

    <cache-container default-cache="default">
        <transport/>
        <replicated-cache name="default">
            <anchored:anchored-keys/>
        </replicated-cache>
    </cache-container>

</infinispan>

When the <anchored-keys/> element is present, the module automatically enables anchored keys and makes some required configuration changes:

  • Disables await-initial-transfer

  • Enables conflict resolution with the equivalent of

    <partition-handling when-split="ALLOW_READ_WRITES" merge-policy="PREFER_NON_NULL"/>

The cache will fail to start if these attributes are explicitly set to other values, if state transfer is disabled, or if transactions are enabled.

16.1.5. Implementation status

Basic operations are implemented: put, putIfAbsent, get, replace, remove, putAll, getAll.

Functional commands

The FunctionalMap API is not implemented.

Other operations that rely on the functional API’s implementation do not work either: merge, compute, computeIfPresent, computeIfAbsent.

Partition handling

When a node crashes, surviving nodes do not remove anchor references pointing to that node. In theory, this could allow merges to skip conflict resolution, but currently the PREFERRED_NON_NULL merge policy is configured automatically and cannot be changed.

Listeners

Cluster listeners and client listeners are implemented and receive the correct notifications.

Non-clustered embedded listeners currently receive notifications on all the nodes, not just the node where the value is stored.

16.1.6. Performance considerations

Client/Server Latency

The client always contacts the primary owner, so any read has a (N-1)/N probability of requiring a unicast RPC from the primary to the anchor owner.

Writes require the primary to send the value to one node and the anchor address to all the other nodes, which is currently done with N-1 unicast RPCs.

In theory we could send in parallel one unicast RPC for the value and one multicast RPC for the address, but that would need additional logic to ignore the address on the anchor owner and with TCP multicast RPCs are implemented as parallel unicasts anyway.

Memory overhead

Compared to a distributed cache with one owner, an anchored-keys cache contains copies of all the keys and their locations, plus the overhead of the cache itself.

Therefore, a node with anchored-keys caches should stop accepting new entries when it has less than (<key size> + <per-key overhead>) * <number of entries not yet inserted> bytes available.

The number of entries not yet inserted is obviously very hard to estimate. In the future we may provide a way to limit the overhead of key location information, e.g. by using a distributed cache.

The per-key overhead is lowest for off-heap storage, around 63 bytes: 8 bytes for the entry reference in MemoryAddressHash.memory, 29 bytes for the off-heap entry header, and 26 bytes for the serialized RemoteMetadata with the owner’s address.

The per-key overhead of the ConcurrentHashMap-based on-heap cache, assuming a 64-bit JVM with compressed OOPS, would be around 92 bytes: 32 bytes for ConcurrentHashMap.Node, 32 bytes for MetadataImmortalCacheEntry, 24 bytes for RemoteMetadata, and 4 bytes in the ConcurrentHashMap.table array.

State transfer

State transfer does not transfer values, only keys and anchor owner information.

Assuming that the values are much bigger compared to the keys, state transfer for an anchored keys cache should also be much faster compared to the state transfer of a distributed cache of a similar size. But for small values, there may not be a visible improvement.

The initial state transfer does not block a joiner from starting, because it will just ask another node for the anchor owner. However, the remote lookups can be expensive, especially in embedded mode, but also in server mode, if the client is not HASH_DISTRIBUTION_AWARE.

17. Extending Infinispan

Infinispan can be extended to provide the ability for an end user to add additional configurations, operations and components outside of the scope of the ones normally provided by Infinispan.

17.1. Custom Commands

Infinispan makes use of a command/visitor pattern to implement the various top-level methods you see on the public-facing API.

While the core commands - and their corresponding visitors - are hard-coded as a part of Infinispan’s core module, module authors can extend and enhance Infinispan by creating new custom commands.

As a module author (such as infinispan-query, etc.) you can define your own commands.

You do so by:

  1. Create a META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions file and ensure this is packaged in your jar.

  2. Implementing ModuleCommandFactory and ModuleCommandExtensions

  3. Specifying the fully-qualified class name of the ModuleCommandExtensions implementation in META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions.

  4. Implement your custom commands and visitors for these commands

17.1.1. An Example

Here is an example of an META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions file, configured accordingly:

org.infinispan.commands.module.ModuleCommandExtensions
org.infinispan.query.QueryModuleCommandExtensions

17.1.2. Preassigned Custom Command Id Ranges

This is the list of Command identifiers that are used by Infinispan based modules or frameworks. Infinispan users should avoid using ids within these ranges. (RANGES to be finalised yet!) Being this a single byte, ranges can’t be too large.

Infinispan Query:

100 - 119

Hibernate Search:

120 - 139

Hot Rod Server:

140 - 141

17.2. Extending the configuration builders and parsers

If your custom module requires configuration, it is possible to enhance Infinispan’s configuration builders and parsers. Look at the custom module tests for a detail example on how to implement this.