Friday, 10 March 2017

JDBC Migrator or: How I Learned to Stop Worrying About Buckets and Utilise the JdbcStringBasedStore!

Infinispan 9 has introduced many improvements to its marshalling codebase in order to improve performance and allow for greater flexibility. Consequently, data marshalled and persisted by Infinispan 8.x is no longer compatible with Infinispan 9.x. Furthermore, as part of our ongoing efforts to improve the cache stores provided by Infinispan, we have removed both the JdbcBinaryStore and JdbcMixedStore in Infinispan 9.0.

To assist users migrating from Infinispan 8.x, we have created the JDBC Migrator that enables existing JDBC stores to be migrated to Infinispan 9’s JdbcStringBasedStore.

No More Binary Keyed Stores!

The original intention of the JdbcBinaryStore was to provide greater flexibility over the JdbcStringBasedStore as it did not require a Key2StringMapper implementation.  This was achieved by utilising the hashcode of an entries key for a table’s ID column entry.  However, due to the possibility of hash collisions all entries had to be placed inside a Bucket object which was then serialised and inserted into the underlying table. Utilising buckets in this manner was far from optimal as each read/write to the underlying table required an existing bucket for a given hash to be retrieved, deserialised, updated, serialised and then re-inserted back into the db.

Introducing JDBC Migrator

The JDBCMigrator is a standalone application that takes a single argument, the path to a .properties file which must contain the configuration properties for both the source and target stores.  To use the migrator you need the infinispan-tools-9.x.jar, as well as the jdbc drivers required by your source and target databases, on your classpath.

An example maven pom that launches the migrator via mvn exec:java is presented below:

Migration Examples

Below are several example .properties files used for migrating various stores, however an exhaustive list of all available properties can be found in the Infinispan user guide.  

* *

Before attempting to migrate your existing stores please ensure you have backed up your database! * *

8.x JdbcBinaryStore → 9.x JdbcStringBasedStore

The most important property to set in this example is "source.marshaller.type=LEGACY" as this instructs the migrator to utilise the Infinispan 8.x marshaller to unmarshall data stored in your existing DB tables. 

If you specified custom AdvancedExternalizer implementations in your Infinispan 8.x configuration, then it is necessary for you to specify these in the migrator configuration and ensure that they are available on the migrators classpath.  To Specify the AdvancedExternalizers to load, it is necessary to define the "source.marshaller.externalizers" property with a comma-separated list of class names. If an ID was explicitly set for your externalizer, then it is possible to prepend the externalizers class name with "<id>:" to ensure the IDs is respected by the marshaller. 

TwoWayKey2StringMapper Migration

As well as using the JDBC Migrator to migrate from Infinispan 8.x, it is also possible to utilise it to migrate from one DB dialect to another or to migrate from one TwoWayKey2StringMapper implementation to another. 

Summary

Infinispan 9 stores are no longer compatible with Infinispan 8.x stores due to internal marshalling changes. Furthermore, the JdbcBinary and JdbcMixed stores have been removed due to their poor performance characteristics.  To aid users in their transition from Infinispan 8.x we have created the JDBC Migrator to enable users to migrate their existing JDBC stores.

If you’re a user of the JDBC stores and have any feedback on the latest changes, let us know via the forum, issue tracker or the #infinispan channel on Freenode. 

Posted by Ryan Emerson on 2017-03-10
Tags: jdbc cache stores migration

Wednesday, 12 August 2009

Coalesced Asynchronous Cache Store

As we prepare for Infinispan’s beta release, let me introduce to you one of the recent enhancements implemented which improves the way the current asynchronous (or write-behind) cache store works.

Right until now, the asynchronous cache store simply queued modifications, while a set of threads would apply them. However, if the queue contained N put operations on the same key, these threads would apply each and every modification one after the other, which is not very efficient.

Thanks to the excellent feedback from the Infinispan community, we’ve now improved the asynchronous cache store so that it coalesces changes and only applies the latest modification on a key. So, if N put operations on the same key are queued, only the last modification will be applied to the cache store.

Internally, the asynchronous concurrent queueing mechanism used performs in O(1) by keeping an map with the latest values for each key. So, this maps acts like the queue but there’s a not a need for a queue as such, we only care about making sure the latest values are stored hence, order is not important.

Note that the way threads apply these modifications is that they start working as soon as there are any changes available and so to see these changes coalesced, the system needs to be relatively busy or a lot of changes on the same key need to happen in a relatively short period of time. We could have made these threads work periodically, i.e. every X seconds, but by doing that, we would be letting modifications pile up and the time between operations and the cache store updates would go up, hence increasing the chance that the cache store is outdated.

Finally, there’s no configuration modifications required to get the asynchronous cache store to work in the coalesced way, it just works like this out-of-the-box. Example:

<?xml version="1.0" encoding="UTF-8"?>
<infinispan xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="urn:infinispan:config:4.0">
  <namedCache name="persistentCache">
     <loaders passivation="false" shared="false" preload="true">
        <loader class="org.infinispan.loaders.file.FileCacheStore" fetchPersistentState="true" ignoreModifications="false" purgeOnStartup="false">
           <properties>
              <property name="location" value="/tmp"/>
           </properties>
           <async enabled="true" threadPoolSize="10"/>
        </loader>
     </loaders>
  </namedCache>
</infinispan>
Posted by Galder Zamarreño on 2009-08-12
Tags: cache stores asynchronous

News

Tags

JUGs alpha as7 asymmetric clusters asynchronous beta c++ cdi chat clustering community conference configuration console data grids data-as-a-service database devoxx distributed executors docker event functional grouping and aggregation hotrod infinispan java 8 jboss cache jcache jclouds jcp jdg jpa judcon kubernetes listeners meetup minor release off-heap openshift performance presentations product protostream radargun radegast recruit release release 8.2 9.0 final release candidate remote query replication queue rest query security spring streams transactions vert.x workshop 8.1.0 API DSL Hibernate-Search Ickle Infinispan Query JP-QL JSON JUGs JavaOne LGPL License NoSQL Open Source Protobuf SCM administration affinity algorithms alpha amazon anchored keys annotations announcement archetype archetypes as5 as7 asl2 asynchronous atomic maps atomic objects availability aws beer benchmark benchmarks berkeleydb beta beta release blogger book breizh camp buddy replication bugfix c# c++ c3p0 cache benchmark framework cache store cache stores cachestore cassandra cdi cep certification cli cloud storage clustered cache configuration clustered counters clustered locks codemotion codename colocation command line interface community comparison compose concurrency conference conferences configuration console counter cpp-client cpu creative cross site replication csharp custom commands daas data container data entry data grids data structures data-as-a-service deadlock detection demo deployment dev-preview development devnation devoxx distributed executors distributed queries distribution docker documentation domain mode dotnet-client dzone refcard ec2 ehcache embedded embedded query equivalence event eviction example externalizers failover faq final fine grained flags flink full-text functional future garbage collection geecon getAll gigaspaces git github gke google graalvm greach conf gsoc hackergarten hadoop hbase health hibernate hibernate ogm hibernate search hot rod hotrod hql http/2 ide index indexing india infinispan infinispan 8 infoq internationalization interoperability interview introduction iteration javascript jboss as 5 jboss asylum jboss cache jbossworld jbug jcache jclouds jcp jdbc jdg jgroups jopr jpa js-client jsr 107 jsr 347 jta judcon kafka kubernetes lambda language learning leveldb license listeners loader local mode lock striping locking logging lucene mac management map reduce marshalling maven memcached memory migration minikube minishift minor release modules mongodb monitoring multi-tenancy nashorn native near caching netty node.js nodejs non-blocking nosqlunit off-heap openshift operator oracle osgi overhead paas paid support partition handling partitioning performance persistence podcast presentation presentations protostream public speaking push api putAll python quarkus query quick start radargun radegast react reactive red hat redis rehashing releaase release release candidate remote remote events remote query replication rest rest query roadmap rocksdb ruby s3 scattered cache scripting second level cache provider security segmented server shell site snowcamp spark split brain spring spring boot spring-session stable standards state transfer statistics storage store store by reference store by value streams substratevm synchronization syntax highlighting tdc testing tomcat transactions tutorial uneven load user groups user guide vagrant versioning vert.x video videos virtual nodes vote voxxed voxxed days milano wallpaper websocket websockets wildfly workshop xsd xsite yarn zulip

back to top